COFFIN: A Computational Framework for Linear SVMs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00166480" target="_blank" >RIV/68407700:21230/09:00166480 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COFFIN: A Computational Framework for Linear SVMs
Popis výsledku v původním jazyce
In a variety of applications, kernel machines such as Support Vector Machines (SVMs) have been used with great success often delivering state-of-the-art results. Using the kernel trick, they work on several domains and even enable heterogeneous data fusion by concatenating feature spaces or multiple kernel learning. Unfortunately, they are not suited for truly large-scale applications since they suffer from the curse of supporting vectors, e.g., the speed of applying SVMs decays linearly with the numberof support vectors. In this paper we develop COFFIN - a new training strategy for linear SVMs that effectively allows the use of on demand computed kernel feature spaces and virtual examples in the primal. With linear training and prediction effort thisframework leverages SVM applications to truly large-scale problems: As an example, we train SVMs for human splice site recognition involving 50 million examples and sophisticated string kernels.
Název v anglickém jazyce
COFFIN: A Computational Framework for Linear SVMs
Popis výsledku anglicky
In a variety of applications, kernel machines such as Support Vector Machines (SVMs) have been used with great success often delivering state-of-the-art results. Using the kernel trick, they work on several domains and even enable heterogeneous data fusion by concatenating feature spaces or multiple kernel learning. Unfortunately, they are not suited for truly large-scale applications since they suffer from the curse of supporting vectors, e.g., the speed of applying SVMs decays linearly with the numberof support vectors. In this paper we develop COFFIN - a new training strategy for linear SVMs that effectively allows the use of on demand computed kernel feature spaces and virtual examples in the primal. With linear training and prediction effort thisframework leverages SVM applications to truly large-scale problems: As an example, we train SVMs for human splice site recognition involving 50 million examples and sophisticated string kernels.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů