Cellular Network Based Real-Time Urban Road Traffic State Estimation Framework Using Neural Network Model Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099390" target="_blank" >RIV/61989100:27240/15:86099390 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SSCI.2015.16" target="_blank" >http://dx.doi.org/10.1109/SSCI.2015.16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI.2015.16" target="_blank" >10.1109/SSCI.2015.16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cellular Network Based Real-Time Urban Road Traffic State Estimation Framework Using Neural Network Model Estimation
Popis výsledku v původním jazyce
This paper presents real time road traffic state estimation framework together with its evaluation. To evaluate the framework, a three-layer Artificial Neural Network model is proposed and used to estimate complete link traffic state. The inputs to the ANN model include probe vehicle's position, time stamps and speeds. To model the arterial road network the microscopic simulation SUMO is used to generate aggregated speed and FCD export files which are used in the training and evaluation of the ANN model. Besides, real A-GPS data gathered using A-GPS mobile phone on a moving vehicle on the sample roads is used to evaluate the ANN model. The performance of the ANN model is evaluated using the performance indicators RMSE and MPAE and on average the MPAE is less than 1.2%. The trained ANN model is also used to estimate the sample road link speeds and compared with ground truth speed (aggregate edge states) on a 10-minute interval for 1hr. The estimation accuracy using MAE and estimation availability indicated that reliable link speed estimation can be generated and used to indicate real-Time urban road traffic condition. (C) 2015 IEEE.
Název v anglickém jazyce
Cellular Network Based Real-Time Urban Road Traffic State Estimation Framework Using Neural Network Model Estimation
Popis výsledku anglicky
This paper presents real time road traffic state estimation framework together with its evaluation. To evaluate the framework, a three-layer Artificial Neural Network model is proposed and used to estimate complete link traffic state. The inputs to the ANN model include probe vehicle's position, time stamps and speeds. To model the arterial road network the microscopic simulation SUMO is used to generate aggregated speed and FCD export files which are used in the training and evaluation of the ANN model. Besides, real A-GPS data gathered using A-GPS mobile phone on a moving vehicle on the sample roads is used to evaluate the ANN model. The performance of the ANN model is evaluated using the performance indicators RMSE and MPAE and on average the MPAE is less than 1.2%. The trained ANN model is also used to estimate the sample road link speeds and compared with ground truth speed (aggregate edge states) on a 10-minute interval for 1hr. The estimation accuracy using MAE and estimation availability indicated that reliable link speed estimation can be generated and used to indicate real-Time urban road traffic condition. (C) 2015 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015
ISBN
978-1-4799-7560-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
38-44
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Kapské Město
Datum konání akce
7. 12. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380431500006