Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An efficient algorithm to mine high average-utility itemsets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098019" target="_blank" >RIV/61989100:27240/16:86098019 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S1474034616300507" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1474034616300507</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aei.2016.04.002" target="_blank" >10.1016/j.aei.2016.04.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An efficient algorithm to mine high average-utility itemsets

  • Popis výsledku v původním jazyce

    With the ever increasing number of applications of data mining, high-utility itemset mining (HUIM) has become a critical issue in recent decades. In traditional HUIM, the utility of an itemset is defined as the sum of the utilities of its items, in transactions where it appears. An important problem with this definition is that it does not take itemset length into account. Because the utility of larger itemset is generally greater than the utility of smaller itemset, traditional HUIM algorithms tend to be biased toward finding a set of large itemsets. Thus, this definition is not a fair measurement of utility. To provide a better assessment of each itemset's utility, the task of high average-utility itemset mining (HAUIM) was proposed. It introduces the average utility measure, which considers both the length of itemsets and their utilities, and is thus more appropriate in real-world situations. Several algorithms have been designed for this task. They can be generally categorized as either level-wise or pattern-growth approaches. Both of them require, however, the amount of computation to find the actual high average-utility itemsets (HAUls). In this paper, we present an efficient average-utility (AU)-list structure to discover the HAUIs more efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space without candidate generation, and an efficient pruning strategy is developed to reduce the search space and speed up the mining process. Extensive experiments are conducted to compare the performance of HAUI-Miner with the state-of-the-art HAUIM algorithms in terms of runtime, number of determining nodes, memory usage and scalability.

  • Název v anglickém jazyce

    An efficient algorithm to mine high average-utility itemsets

  • Popis výsledku anglicky

    With the ever increasing number of applications of data mining, high-utility itemset mining (HUIM) has become a critical issue in recent decades. In traditional HUIM, the utility of an itemset is defined as the sum of the utilities of its items, in transactions where it appears. An important problem with this definition is that it does not take itemset length into account. Because the utility of larger itemset is generally greater than the utility of smaller itemset, traditional HUIM algorithms tend to be biased toward finding a set of large itemsets. Thus, this definition is not a fair measurement of utility. To provide a better assessment of each itemset's utility, the task of high average-utility itemset mining (HAUIM) was proposed. It introduces the average utility measure, which considers both the length of itemsets and their utilities, and is thus more appropriate in real-world situations. Several algorithms have been designed for this task. They can be generally categorized as either level-wise or pattern-growth approaches. Both of them require, however, the amount of computation to find the actual high average-utility itemsets (HAUls). In this paper, we present an efficient average-utility (AU)-list structure to discover the HAUIs more efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space without candidate generation, and an efficient pruning strategy is developed to reduce the search space and speed up the mining process. Extensive experiments are conducted to compare the performance of HAUI-Miner with the state-of-the-art HAUIM algorithms in terms of runtime, number of determining nodes, memory usage and scalability.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Engineering Informatics

  • ISSN

    1474-0346

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    233-243

  • Kód UT WoS článku

    000376694600011

  • EID výsledku v databázi Scopus

    2-s2.0-84963640907