New approaches for mining high utility itemsets with multiple utility thresholds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253777" target="_blank" >RIV/61989100:27240/24:10253777 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001129258400002" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001129258400002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-023-05145-8" target="_blank" >10.1007/s10489-023-05145-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New approaches for mining high utility itemsets with multiple utility thresholds
Popis výsledku v původním jazyce
Recently, two research directions have been noticed in data mining: frequent itemset mining (FIM) and high utility itemset mining (HUIM). The FIM process will output itemsets whose number of occurrences together exceeds or equals the required threshold, but this process ignores the beneficial attribute of each item. HUIM algorithms are proposed to overcome the disadvantage of FIM, but these algorithms only use a single threshold, which is unsuitable in the real world when applications often require different utility thresholds. HUIM algorithms with multi-threshold utilities are proposed, but these have high mining time and memory consumption. This paper thus presents an efficient method for Mining High Utility Itemsets with Multiple Utility Thresholds (MHUI-MUT). The article applies upper bounds and the strategy of pruning, thus reducing database scanning, and proposes a cut-off threshold to minimize the mining time.We also present a method to parallelize the algorithm to make the most of the performance of multi-core computers. The experimental results show the superior speed of the MHUI-MUT algorithm compared to the previous one, and the parallel version also outperforms the proposed sequential algorithm. (C) 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
New approaches for mining high utility itemsets with multiple utility thresholds
Popis výsledku anglicky
Recently, two research directions have been noticed in data mining: frequent itemset mining (FIM) and high utility itemset mining (HUIM). The FIM process will output itemsets whose number of occurrences together exceeds or equals the required threshold, but this process ignores the beneficial attribute of each item. HUIM algorithms are proposed to overcome the disadvantage of FIM, but these algorithms only use a single threshold, which is unsuitable in the real world when applications often require different utility thresholds. HUIM algorithms with multi-threshold utilities are proposed, but these have high mining time and memory consumption. This paper thus presents an efficient method for Mining High Utility Itemsets with Multiple Utility Thresholds (MHUI-MUT). The article applies upper bounds and the strategy of pruning, thus reducing database scanning, and proposes a cut-off threshold to minimize the mining time.We also present a method to parallelize the algorithm to make the most of the performance of multi-core computers. The experimental results show the superior speed of the MHUI-MUT algorithm compared to the previous one, and the parallel version also outperforms the proposed sequential algorithm. (C) 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Intelligence
ISSN
0924-669X
e-ISSN
1573-7497
Svazek periodika
54
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001129258400002
EID výsledku v databázi Scopus
2-s2.0-85180177547