Efficient mining of high average-utility itemsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236456" target="_blank" >RIV/61989100:27240/17:10236456 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236456
Výsledek na webu
<a href="https://www.taylorfrancis.com/books/e/9781498779456/chapters/10.1201%2F9781315375083-37" target="_blank" >https://www.taylorfrancis.com/books/e/9781498779456/chapters/10.1201%2F9781315375083-37</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient mining of high average-utility itemsets
Popis výsledku v původním jazyce
In traditional High-Utility Itemset Mining (HUIM), the utility of an itemset is defined as the sum of the utilities of its items in transactions where it appears. An important problem with this definition is that it does not take itemset length into account. To provide a better assessment of each itemset’s utility, the task of High Average-Utility Itemset Mining (HAUIM) was proposed and several algorithms have been extensively studied. Most of the past works are based on level-wise or patterngrowth approaches, which required amounts of computation to mine the required High Average-Utility Itemsets (HAUIs). In this paper, we present an efficient Average-Utility (AU)-list structure to discover the HAUIs more efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space without candidate generation, and an efficient pruning strategy is developed to reduce the search space and speed up the mining process. Extensive experiments are conducted to compare the performance of HAUI-Miner with the state-of-the-art algorithms of HAUIM in terms of runtime and number of determining nodes.
Název v anglickém jazyce
Efficient mining of high average-utility itemsets
Popis výsledku anglicky
In traditional High-Utility Itemset Mining (HUIM), the utility of an itemset is defined as the sum of the utilities of its items in transactions where it appears. An important problem with this definition is that it does not take itemset length into account. To provide a better assessment of each itemset’s utility, the task of High Average-Utility Itemset Mining (HAUIM) was proposed and several algorithms have been extensively studied. Most of the past works are based on level-wise or patterngrowth approaches, which required amounts of computation to mine the required High Average-Utility Itemsets (HAUIs). In this paper, we present an efficient Average-Utility (AU)-list structure to discover the HAUIs more efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space without candidate generation, and an efficient pruning strategy is developed to reduce the search space and speed up the mining process. Extensive experiments are conducted to compare the performance of HAUI-Miner with the state-of-the-art algorithms of HAUIM in terms of runtime and number of determining nodes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Communication, Management and Information Technology - Proceedings of the International Conference on Communication, Management and Information Technology, ICCMIT 2016
ISBN
978-1-315-37508-3
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
241-248
Název nakladatele
CRC Press
Místo vydání
Leiden
Místo konání akce
Cosenza
Datum konání akce
26. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—