Traffic speed prediction using hidden markov models for Czech Republic highways
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098876" target="_blank" >RIV/61989100:27240/16:86098876 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86098876
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-39883-9_15" target="_blank" >http://dx.doi.org/10.1007/978-3-319-39883-9_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-39883-9_15" target="_blank" >10.1007/978-3-319-39883-9_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traffic speed prediction using hidden markov models for Czech Republic highways
Popis výsledku v původním jazyce
One of the main tasks of Intelligent Transportation Systems is to predict state of the traffic fromshort tomedium horizon. This prediction can be used to manage the traffic both to prevent the traffic congestions and to minimize their impact. This information is also useful for route planning. This prediction is not an easy task given that the traffic flow is very difficult to describe by numerical equations. Other possible approach to traffic state prediction is to use historical data about the traffic and relate them to the current state by application of some form of statistical approach. This task is, however, complicated by complex nature of the traffic data, which can, due to various reasons, be quite inaccurate. The paper is focused on finding the algorithms that can exploit valuable information contained in traffic data from Czech Republic highways to make a short term traffic speed predictions. Our proposed algorithm is based on hidden Markov models (HMM), which can naturally utilize data sources from Czech Republic highways. (C) Springer International Publishing Switzerland 2016.
Název v anglickém jazyce
Traffic speed prediction using hidden markov models for Czech Republic highways
Popis výsledku anglicky
One of the main tasks of Intelligent Transportation Systems is to predict state of the traffic fromshort tomedium horizon. This prediction can be used to manage the traffic both to prevent the traffic congestions and to minimize their impact. This information is also useful for route planning. This prediction is not an easy task given that the traffic flow is very difficult to describe by numerical equations. Other possible approach to traffic state prediction is to use historical data about the traffic and relate them to the current state by application of some form of statistical approach. This task is, however, complicated by complex nature of the traffic data, which can, due to various reasons, be quite inaccurate. The paper is focused on finding the algorithms that can exploit valuable information contained in traffic data from Czech Republic highways to make a short term traffic speed predictions. Our proposed algorithm is based on hidden Markov models (HMM), which can naturally utilize data sources from Czech Republic highways. (C) Springer International Publishing Switzerland 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies
ISBN
978-3-319-39882-2
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
10
Strana od-do
187-196
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlin
Místo konání akce
Puerto de la Cruz
Datum konání akce
15. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389808300015