Traffic speed prediction using ensemble kalman filter and differential evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10244139" target="_blank" >RIV/61989100:27740/19:10244139 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.matec-conferences.org/articles/matecconf/abs/2019/08/matecconf_ictle2019_02001/matecconf_ictle2019_02001.html" target="_blank" >https://www.matec-conferences.org/articles/matecconf/abs/2019/08/matecconf_ictle2019_02001/matecconf_ictle2019_02001.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/201925902001" target="_blank" >10.1051/matecconf/201925902001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traffic speed prediction using ensemble kalman filter and differential evolution
Popis výsledku v původním jazyce
Importance of traffic state prediction steadily increases with growing volume of traffic. Ability to predict traffic speed in short to medium horizon (i.e. up to one hour) is one of the main tasks of every newly developed Intelligent Transportation System. There are two possible approaches to this prediction. The first is to utilize physical properties of the traffic flow to construct an exact or approximate numerical model. This approach is, however, almost impossible to implement on a larger scale given the difficulty to obtain enough traffic data to describe the starting and boundary conditions of the model. The other option is to use historical traffic data and relate information and patterns they contain to the current traffic state by application of some form of statistical or machine learning approach. We propose to use combination of Ensemble Kalman filter and Cell Transmission Model for this task. These models combine properties of physical model with ability to incorporate uncertainty of the traffic data.
Název v anglickém jazyce
Traffic speed prediction using ensemble kalman filter and differential evolution
Popis výsledku anglicky
Importance of traffic state prediction steadily increases with growing volume of traffic. Ability to predict traffic speed in short to medium horizon (i.e. up to one hour) is one of the main tasks of every newly developed Intelligent Transportation System. There are two possible approaches to this prediction. The first is to utilize physical properties of the traffic flow to construct an exact or approximate numerical model. This approach is, however, almost impossible to implement on a larger scale given the difficulty to obtain enough traffic data to describe the starting and boundary conditions of the model. The other option is to use historical traffic data and relate information and patterns they contain to the current traffic state by application of some form of statistical or machine learning approach. We propose to use combination of Ensemble Kalman filter and Cell Transmission Model for this task. These models combine properties of physical model with ability to incorporate uncertainty of the traffic data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MATEC Web of Conferences. Volume 259
ISBN
—
ISSN
2261-236X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
7
Název nakladatele
EDP Sciences
Místo vydání
Paříž
Místo konání akce
Bangkok
Datum konání akce
3. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000471300400005