A fish detection approach based on BAT algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099050" target="_blank" >RIV/61989100:27240/16:86099050 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-26690-9_25" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-26690-9_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-26690-9_25" target="_blank" >10.1007/978-3-319-26690-9_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A fish detection approach based on BAT algorithm
Popis výsledku v původním jazyce
Fish detection and identification are important steps towards monitoring fish behavior. The importance of such monitoring step comes from the need for better understanding of the fish ecology and issuing conservative actions for keeping the safety of this vital food resource. The recent advances in machine learning approaches allow many applications to easily analyze and detect a number of fish species. The main competence between these approaches is based on two main detection parameters: the time and the accuracy measurements. Therefore, this paper proposes a fish detection approach based on BAT optimization algorithm (BA). This approach aims to reduce the classification time within the fish detection process. The performance of this system was evaluated by a number of well-known machine learning classifiers, KNN, ANN, and SVM. The approach was tested with 151 images to detect the Nile Tilapia fish species and the results showed that k-NN can achieve high accuracy 90 %, with feature reduction ratio close to 61 % along with a noticeable decrease in the classification time. (C) Springer International Publishing Switzerland 2016.
Název v anglickém jazyce
A fish detection approach based on BAT algorithm
Popis výsledku anglicky
Fish detection and identification are important steps towards monitoring fish behavior. The importance of such monitoring step comes from the need for better understanding of the fish ecology and issuing conservative actions for keeping the safety of this vital food resource. The recent advances in machine learning approaches allow many applications to easily analyze and detect a number of fish species. The main competence between these approaches is based on two main detection parameters: the time and the accuracy measurements. Therefore, this paper proposes a fish detection approach based on BAT optimization algorithm (BA). This approach aims to reduce the classification time within the fish detection process. The performance of this system was evaluated by a number of well-known machine learning classifiers, KNN, ANN, and SVM. The approach was tested with 151 images to detect the Nile Tilapia fish species and the results showed that k-NN can achieve high accuracy 90 %, with feature reduction ratio close to 61 % along with a noticeable decrease in the classification time. (C) Springer International Publishing Switzerland 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 407
ISBN
978-3-319-26688-6
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
273-283
Název nakladatele
Springer Verlag
Místo vydání
London
Místo konání akce
Beni Suef
Datum konání akce
28. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—