Soft granular computing based classification using hybrid fuzzy-KNN-SVM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099105" target="_blank" >RIV/61989100:27240/16:86099105 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >http://dx.doi.org/10.3233/IDT-150243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >10.3233/IDT-150243</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soft granular computing based classification using hybrid fuzzy-KNN-SVM
Popis výsledku v původním jazyce
This paper aims at providing the concept of information granulation in Granular computing based pattern classification that is used to deal with incomplete, unreliable, uncertain knowledge from the view of a dataset. Data Discretization provides us the granules which further can be used to classify the instances. We use Equal width and Equal frequency Discretization as unsupervised ones; Fayyad-Irani's Minimum description length and Kononenko's supervised discretization approaches along with Fuzzy logic, neural network, Support vector machine and their hybrids to develop an efficient granular information processing paradigm. The experimental results show the effectiveness of our approach. We use benchmark datasets in UCI Machine Learning Repository in order to verify the performance of granular computing based approach in comparison with other existing approaches. Finally, we perform statistical significance test for confirming validity of the results obtained. (C) 2016 IOS Press and the authors. All rights reserved.
Název v anglickém jazyce
Soft granular computing based classification using hybrid fuzzy-KNN-SVM
Popis výsledku anglicky
This paper aims at providing the concept of information granulation in Granular computing based pattern classification that is used to deal with incomplete, unreliable, uncertain knowledge from the view of a dataset. Data Discretization provides us the granules which further can be used to classify the instances. We use Equal width and Equal frequency Discretization as unsupervised ones; Fayyad-Irani's Minimum description length and Kononenko's supervised discretization approaches along with Fuzzy logic, neural network, Support vector machine and their hybrids to develop an efficient granular information processing paradigm. The experimental results show the effectiveness of our approach. We use benchmark datasets in UCI Machine Learning Repository in order to verify the performance of granular computing based approach in comparison with other existing approaches. Finally, we perform statistical significance test for confirming validity of the results obtained. (C) 2016 IOS Press and the authors. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Intelligent Decision Technologies
ISSN
1872-4981
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
115-128
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84960844134