Finger-Vein Classification Using Granular Support Vector Machine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017074" target="_blank" >RIV/62690094:18450/20:50017074 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-41964-6_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-41964-6_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-41964-6_27" target="_blank" >10.1007/978-3-030-41964-6_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finger-Vein Classification Using Granular Support Vector Machine
Popis výsledku v původním jazyce
The protection of control and intelligent systems across networks and interconnected components is a significant concern. Biometric systems are smart systems that ensure the safety and protection of the information stored across these systems. A breach of security in a biometric system is a breach in the overall security of data and privacy. Therefore, the advancement in improving the safety of biometric systems forms part of ensuring a robust security system. In this paper, we aimed at strengthening the finger vein classification that is acknowledged to be a fraud-proof unimodal biometric trait. Despite several attempts to enhance finger-vein recognition by researchers, the classification accuracy and performance is still a significant concern in this research. This is due to high dimensionality and invariability associated with finger-vein image features as well as the inability of small training samples to give high accuracy for the finger-vein classifications. We aim to fill this gap by representing the finger vein features in the form of information granules using an interval-based hyperbox granular approach and then apply a dimensionality reduction on these features using principal component analysis (PCA). We further apply a granular classification using an improved granular support vector machine (GSVM) technique based on weighted linear loss function to avoid overfitting and yield better generalization performance and enhance classification accuracy. We named our approach PCA-GSVM. The experimental results show that the classification of finger-vein granular features provides better results when compared with some state-of-the-art biometric techniques used in multimodal biometric systems. © 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Finger-Vein Classification Using Granular Support Vector Machine
Popis výsledku anglicky
The protection of control and intelligent systems across networks and interconnected components is a significant concern. Biometric systems are smart systems that ensure the safety and protection of the information stored across these systems. A breach of security in a biometric system is a breach in the overall security of data and privacy. Therefore, the advancement in improving the safety of biometric systems forms part of ensuring a robust security system. In this paper, we aimed at strengthening the finger vein classification that is acknowledged to be a fraud-proof unimodal biometric trait. Despite several attempts to enhance finger-vein recognition by researchers, the classification accuracy and performance is still a significant concern in this research. This is due to high dimensionality and invariability associated with finger-vein image features as well as the inability of small training samples to give high accuracy for the finger-vein classifications. We aim to fill this gap by representing the finger vein features in the form of information granules using an interval-based hyperbox granular approach and then apply a dimensionality reduction on these features using principal component analysis (PCA). We further apply a granular classification using an improved granular support vector machine (GSVM) technique based on weighted linear loss function to avoid overfitting and yield better generalization performance and enhance classification accuracy. We named our approach PCA-GSVM. The experimental results show that the classification of finger-vein granular features provides better results when compared with some state-of-the-art biometric techniques used in multimodal biometric systems. © 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-41963-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
309-320
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Thailand
Datum konání akce
23. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000611576500027