Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Finger-Vein Classification Using Granular Support Vector Machine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017074" target="_blank" >RIV/62690094:18450/20:50017074 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-41964-6_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-41964-6_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-41964-6_27" target="_blank" >10.1007/978-3-030-41964-6_27</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Finger-Vein Classification Using Granular Support Vector Machine

  • Popis výsledku v původním jazyce

    The protection of control and intelligent systems across networks and interconnected components is a significant concern. Biometric systems are smart systems that ensure the safety and protection of the information stored across these systems. A breach of security in a biometric system is a breach in the overall security of data and privacy. Therefore, the advancement in improving the safety of biometric systems forms part of ensuring a robust security system. In this paper, we aimed at strengthening the finger vein classification that is acknowledged to be a fraud-proof unimodal biometric trait. Despite several attempts to enhance finger-vein recognition by researchers, the classification accuracy and performance is still a significant concern in this research. This is due to high dimensionality and invariability associated with finger-vein image features as well as the inability of small training samples to give high accuracy for the finger-vein classifications. We aim to fill this gap by representing the finger vein features in the form of information granules using an interval-based hyperbox granular approach and then apply a dimensionality reduction on these features using principal component analysis (PCA). We further apply a granular classification using an improved granular support vector machine (GSVM) technique based on weighted linear loss function to avoid overfitting and yield better generalization performance and enhance classification accuracy. We named our approach PCA-GSVM. The experimental results show that the classification of finger-vein granular features provides better results when compared with some state-of-the-art biometric techniques used in multimodal biometric systems. © 2020, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Finger-Vein Classification Using Granular Support Vector Machine

  • Popis výsledku anglicky

    The protection of control and intelligent systems across networks and interconnected components is a significant concern. Biometric systems are smart systems that ensure the safety and protection of the information stored across these systems. A breach of security in a biometric system is a breach in the overall security of data and privacy. Therefore, the advancement in improving the safety of biometric systems forms part of ensuring a robust security system. In this paper, we aimed at strengthening the finger vein classification that is acknowledged to be a fraud-proof unimodal biometric trait. Despite several attempts to enhance finger-vein recognition by researchers, the classification accuracy and performance is still a significant concern in this research. This is due to high dimensionality and invariability associated with finger-vein image features as well as the inability of small training samples to give high accuracy for the finger-vein classifications. We aim to fill this gap by representing the finger vein features in the form of information granules using an interval-based hyperbox granular approach and then apply a dimensionality reduction on these features using principal component analysis (PCA). We further apply a granular classification using an improved granular support vector machine (GSVM) technique based on weighted linear loss function to avoid overfitting and yield better generalization performance and enhance classification accuracy. We named our approach PCA-GSVM. The experimental results show that the classification of finger-vein granular features provides better results when compared with some state-of-the-art biometric techniques used in multimodal biometric systems. © 2020, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-030-41963-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    309-320

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Thailand

  • Datum konání akce

    23. 5. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000611576500027