An investigation of information granulation techniques in cybersecurity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017080" target="_blank" >RIV/62690094:18450/20:50017080 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-14132-5_12" target="_blank" >http://dx.doi.org/10.1007/978-3-030-14132-5_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14132-5_12" target="_blank" >10.1007/978-3-030-14132-5_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An investigation of information granulation techniques in cybersecurity
Popis výsledku v původním jazyce
Information Granulation in the context of Granular Computing provides a viable alternative for finding solutions to complex problems using granules. Issues such as intrusions, malware exigencies, spam and user unauthorized access still remain challenging in cybersecurity. Moreover, as the prevalence of undetected attacks due to system design flaws and system development flaws become rampant in the cybersecurity systems. Although, numerous techniques that have been applied have shown very good prospects, there are several difficulties in managing cyber-attacks from the angle of biometric recognition systems which are commonly used in cybersecurity. These challenges has positioned cybersecurity issues to be regarded as complex and uncertain which requires techniques such as information granulation to unravel a sustainable solution. This paper investigates how information granulation techniques are used in cybersecurity detection models with the aim of providing a holistic view of the current status of research in this area. In this paper, we proposed a framework that applied the principle of justifiable granularity (PJG) in the feature extraction module of a finger-vein recognition system using granular support vector machines as classifier to justify the effectiveness of information granulation in strengthening a verification system in a cybersecurity setting. We benchmark our result with state-of-the-art biometric verification systems, and our approach shows promising contribution in that direction.
Název v anglickém jazyce
An investigation of information granulation techniques in cybersecurity
Popis výsledku anglicky
Information Granulation in the context of Granular Computing provides a viable alternative for finding solutions to complex problems using granules. Issues such as intrusions, malware exigencies, spam and user unauthorized access still remain challenging in cybersecurity. Moreover, as the prevalence of undetected attacks due to system design flaws and system development flaws become rampant in the cybersecurity systems. Although, numerous techniques that have been applied have shown very good prospects, there are several difficulties in managing cyber-attacks from the angle of biometric recognition systems which are commonly used in cybersecurity. These challenges has positioned cybersecurity issues to be regarded as complex and uncertain which requires techniques such as information granulation to unravel a sustainable solution. This paper investigates how information granulation techniques are used in cybersecurity detection models with the aim of providing a holistic view of the current status of research in this area. In this paper, we proposed a framework that applied the principle of justifiable granularity (PJG) in the feature extraction module of a finger-vein recognition system using granular support vector machines as classifier to justify the effectiveness of information granulation in strengthening a verification system in a cybersecurity setting. We benchmark our result with state-of-the-art biometric verification systems, and our approach shows promising contribution in that direction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Studies in Computational Intelligence
ISBN
—
ISSN
1860-949X
e-ISSN
1860-9503
Počet stran výsledku
13
Strana od-do
151-163
Název nakladatele
Springer Nature
Místo vydání
Cham
Místo konání akce
Yogakarta, Indonesie
Datum konání akce
8. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—