Students' Behavior Patterns in LMS eLogika Detected by FCA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10235980" target="_blank" >RIV/61989100:27240/17:10235980 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5593/sgem2017/21/S07.079" target="_blank" >http://dx.doi.org/10.5593/sgem2017/21/S07.079</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5593/sgem2017/21/S07.079" target="_blank" >10.5593/sgem2017/21/S07.079</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Students' Behavior Patterns in LMS eLogika Detected by FCA
Popis výsledku v původním jazyce
The e-learning system eLogika serves for teaching logic. In the system there are study materials at students’ disposal, but it also provides online tests and promotes all the activities in which the students can obtain their credits. The system collects data about users who are logged in, e.g. time spent on a particular activity, the number of activities performed by particular students, what data is a student interested in, etc. The goal of this paper is to describe the application of many-valued formal concept analysis (FCA) in order to discover typical patterns of students’ behavior. The concepts retrieved by this method represent groups of students with a common behavior in the learning process. These concepts are further used in the e-learning system in order to inform students about their positive/negative tendencies with respect to their course results. Another way of utilizing these patterns is their application in order to improve the system to be more user-friendly. Since the data stored in the eLogika system are numerical we need to categorize them in order to be used in the many-valued FCA method. In the paper we describe two ways of data categorization that proved to be applicable in the FCA method with promising results.
Název v anglickém jazyce
Students' Behavior Patterns in LMS eLogika Detected by FCA
Popis výsledku anglicky
The e-learning system eLogika serves for teaching logic. In the system there are study materials at students’ disposal, but it also provides online tests and promotes all the activities in which the students can obtain their credits. The system collects data about users who are logged in, e.g. time spent on a particular activity, the number of activities performed by particular students, what data is a student interested in, etc. The goal of this paper is to describe the application of many-valued formal concept analysis (FCA) in order to discover typical patterns of students’ behavior. The concepts retrieved by this method represent groups of students with a common behavior in the learning process. These concepts are further used in the e-learning system in order to inform students about their positive/negative tendencies with respect to their course results. Another way of utilizing these patterns is their application in order to improve the system to be more user-friendly. Since the data stored in the eLogika system are numerical we need to categorize them in order to be used in the many-valued FCA method. In the paper we describe two ways of data categorization that proved to be applicable in the FCA method with promising results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13277S" target="_blank" >GA15-13277S: Hyperintensionální logika pro analýzu přirozeného jazyka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
17th International Multidisciplinary Scientific GeoConference: SGEM 2017 : conference proceedings : 29 June-5 July, 2017, Albena, Bulgaria. Volume 17. Issue 21
ISBN
978-619-7408-01-0
ISSN
1314-2704
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
617-624
Název nakladatele
STEF92 Technology Ltd.
Místo vydání
Sofia
Místo konání akce
Albena
Datum konání akce
29. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—