Optimalization of parallel GNG by neurons assigned to processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236161" target="_blank" >RIV/61989100:27240/17:10236161 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236161
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-59105-6_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-59105-6_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59105-6_6" target="_blank" >10.1007/978-3-319-59105-6_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimalization of parallel GNG by neurons assigned to processes
Popis výsledku v původním jazyce
The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering is used to reveal structures and to reduce large amounts of raw data. There are two main issues when clustering based on unsupervised learning, such as Growing Neural Gas (GNG) [9], is performed on vast high dimensional data collection - the fast growth of computational complexity with respect to growing data dimensionality, and the specific similarity measurement in a high-dimensional space. These two factors reduce the effectiveness of clustering algorithms in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication. The achieved speed-up was better than previous approach and the results from the standard and parallel version of GNG are same.
Název v anglickém jazyce
Optimalization of parallel GNG by neurons assigned to processes
Popis výsledku anglicky
The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering is used to reveal structures and to reduce large amounts of raw data. There are two main issues when clustering based on unsupervised learning, such as Growing Neural Gas (GNG) [9], is performed on vast high dimensional data collection - the fast growth of computational complexity with respect to growing data dimensionality, and the specific similarity measurement in a high-dimensional space. These two factors reduce the effectiveness of clustering algorithms in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication. The achieved speed-up was better than previous approach and the results from the standard and parallel version of GNG are same.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 10244
ISBN
978-3-319-59104-9
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
10
Strana od-do
63-72
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Białystok
Datum konání akce
16. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—