Growing neural gas based on data density
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240396" target="_blank" >RIV/61989100:27240/18:10240396 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10240396
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99954-8_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99954-8_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99954-8_27" target="_blank" >10.1007/978-3-319-99954-8_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Growing neural gas based on data density
Popis výsledku v původním jazyce
The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering methods, such as Growing Neural Gas (GNG) [10] that is based on unsupervised learning, is used to reveal structures and to reduce large amounts of raw data. The growth of computational complexity of such clustering method, caused by growing data dimensionality and the specific similarity measurement in a high-dimensional space, reduces the effectiveness of clustering method in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication which depends on the number of neurons and edges among neurons in the neural network. A new algorithm of adding neurons depending on data density is proposed in the paper. (C) Springer Nature Switzerland AG 2018.
Název v anglickém jazyce
Growing neural gas based on data density
Popis výsledku anglicky
The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering methods, such as Growing Neural Gas (GNG) [10] that is based on unsupervised learning, is used to reveal structures and to reduce large amounts of raw data. The growth of computational complexity of such clustering method, caused by growing data dimensionality and the specific similarity measurement in a high-dimensional space, reduces the effectiveness of clustering method in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication which depends on the number of neurons and edges among neurons in the neural network. A new algorithm of adding neurons depending on data density is proposed in the paper. (C) Springer Nature Switzerland AG 2018.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 11127
ISBN
978-3-319-99953-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
314-323
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Olomouc
Datum konání akce
27. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—