Integration of a Self-Organizing Map and a Virtual Pheromone for Real Time Abnormal Movement Detection in Marine Traffic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236462" target="_blank" >RIV/61989100:27240/17:10236462 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236462
Výsledek na webu
<a href="https://www.mii.lt/informatica/htm/INFO1145.htm" target="_blank" >https://www.mii.lt/informatica/htm/INFO1145.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15388/Informatica.2017.133" target="_blank" >10.15388/Informatica.2017.133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integration of a Self-Organizing Map and a Virtual Pheromone for Real Time Abnormal Movement Detection in Marine Traffic
Popis výsledku v původním jazyce
In recent years, the growth of marine traffic in ports and their surroundings raise the traffic and security control problems and increase the workload for traffic control operators. The automated identification system of vessel movement generates huge amounts of data that need to be analysed to make the proper decision. Thus, rapid self-learning algorithms for the decision support system have to be developed to detect the abnormal vessel movement in intense marine traffic areas. The paper presents a new self-learning adaptive classification algorithm based on the combination of a self-organizing map (SOM) and a virtual pheromone for abnormal vessel movement detection in maritime traffic. To improve the quality of classification results, Mexican hat neighbourhood function has been used as a SOM neighbourhood function. To estimate the classification results of the proposed algorithm, an experimental investigation has been performed using the real data set, provided by the Klaipeda seaport and that obtained from the automated identification system. The results of the research show that the proposed algorithm provides rapid self-learning characteristics and classification.
Název v anglickém jazyce
Integration of a Self-Organizing Map and a Virtual Pheromone for Real Time Abnormal Movement Detection in Marine Traffic
Popis výsledku anglicky
In recent years, the growth of marine traffic in ports and their surroundings raise the traffic and security control problems and increase the workload for traffic control operators. The automated identification system of vessel movement generates huge amounts of data that need to be analysed to make the proper decision. Thus, rapid self-learning algorithms for the decision support system have to be developed to detect the abnormal vessel movement in intense marine traffic areas. The paper presents a new self-learning adaptive classification algorithm based on the combination of a self-organizing map (SOM) and a virtual pheromone for abnormal vessel movement detection in maritime traffic. To improve the quality of classification results, Mexican hat neighbourhood function has been used as a SOM neighbourhood function. To estimate the classification results of the proposed algorithm, an experimental investigation has been performed using the real data set, provided by the Klaipeda seaport and that obtained from the automated identification system. The results of the research show that the proposed algorithm provides rapid self-learning characteristics and classification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Informatica
ISSN
0868-4952
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
16
Strana od-do
359-374
Kód UT WoS článku
000405641900007
EID výsledku v databázi Scopus
2-s2.0-85031682286