Sensorless control of variable speed induction motor drive using RBF neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238428" target="_blank" >RIV/61989100:27240/17:10238428 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jal.2016.11.017" target="_blank" >http://dx.doi.org/10.1016/j.jal.2016.11.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jal.2016.11.017" target="_blank" >10.1016/j.jal.2016.11.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensorless control of variable speed induction motor drive using RBF neural network
Popis výsledku v původním jazyce
High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.
Název v anglickém jazyce
Sensorless control of variable speed induction motor drive using RBF neural network
Popis výsledku anglicky
High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TE02000103" target="_blank" >TE02000103: Centrum inteligentních pohonů a pokročilého řízení strojů (CIDAM)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Logic
ISSN
1570-8683
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
November 2017
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
97-108
Kód UT WoS článku
000413130000010
EID výsledku v databázi Scopus
2-s2.0-85006991047