Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Use of the Software PI System Within the Concept of Smart Cities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238526" target="_blank" >RIV/61989100:27240/17:10238526 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Use of the Software PI System Within the Concept of Smart Cities

  • Popis výsledku v původním jazyce

    The article focuses on the description of the possibility of using the PI System software for the monitoring and management of operating and technical functions in Intelligent Buildings (IB) and Smart Home (SH) with the aim of subsequent use for BMS Building Management System) in accordance with the requirements of the concept of Smart Cities (SC). This article describes the implementation of the PI System software for remote monitoring of HVAC control in the office building and monitoring HVAC, lights, and blinds control in the building of residential types. The original contribution of the article is the use of PI System software for large data processing in the real-life operation of buildings in order to efficiently use energy and reduce operational costs in buildings within the concept of SC. In the experimental part of this paper is described the indirect method of predicting CO2 from the measured values of temperature and humidity sensors, using a gradient algorithm for error Backpropagation for the adaptation of a multilayer feed forward neural network. During the realized experiments the Levenberg-Marquardt method, the Bayesian Regulation method and the Regulation Scaled Conjugate gradient method for predicting the course of CO2 concentration (ppm) from the measured indoor temperature T (oC) and relative humidity rH (%) and Outdoor temperature T (oC) were compared. The actual implementation was carried out in an experimental workplace (SH) using BACnet technology components to control heating, cooling, and ventilation. The obtained results were verified and classified using CA (Correlation Analysis) and the RMSE parameters (Root Mean Squared Error) and MAPE (Mean Absolute Percentage Error) were calculated. The information obtained can be used for the indirect monitoring of life activities of residents or for the optimization of technical operating functions. The indirect method for predicting CO2 has the potential to reduce capital and operating costs by reducing the total number of sensors used in intelligent buildings. The experimental results confirm the suitability of the proposed method in real operation.

  • Název v anglickém jazyce

    Use of the Software PI System Within the Concept of Smart Cities

  • Popis výsledku anglicky

    The article focuses on the description of the possibility of using the PI System software for the monitoring and management of operating and technical functions in Intelligent Buildings (IB) and Smart Home (SH) with the aim of subsequent use for BMS Building Management System) in accordance with the requirements of the concept of Smart Cities (SC). This article describes the implementation of the PI System software for remote monitoring of HVAC control in the office building and monitoring HVAC, lights, and blinds control in the building of residential types. The original contribution of the article is the use of PI System software for large data processing in the real-life operation of buildings in order to efficiently use energy and reduce operational costs in buildings within the concept of SC. In the experimental part of this paper is described the indirect method of predicting CO2 from the measured values of temperature and humidity sensors, using a gradient algorithm for error Backpropagation for the adaptation of a multilayer feed forward neural network. During the realized experiments the Levenberg-Marquardt method, the Bayesian Regulation method and the Regulation Scaled Conjugate gradient method for predicting the course of CO2 concentration (ppm) from the measured indoor temperature T (oC) and relative humidity rH (%) and Outdoor temperature T (oC) were compared. The actual implementation was carried out in an experimental workplace (SH) using BACnet technology components to control heating, cooling, and ventilation. The obtained results were verified and classified using CA (Correlation Analysis) and the RMSE parameters (Root Mean Squared Error) and MAPE (Mean Absolute Percentage Error) were calculated. The information obtained can be used for the indirect monitoring of life activities of residents or for the optimization of technical operating functions. The indirect method for predicting CO2 has the potential to reduce capital and operating costs by reducing the total number of sensors used in intelligent buildings. The experimental results confirm the suitability of the proposed method in real operation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA 2017

  • ISBN

    978-80-553-3195-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    513-517

  • Název nakladatele

    Technical University of Košice

  • Místo vydání

    Košice

  • Místo konání akce

    Stará Lesná

  • Datum konání akce

    12. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000431847700100