Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient algorithms for mining colossal patterns in high dimensional databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238741" target="_blank" >RIV/61989100:27240/17:10238741 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S095070511730045X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S095070511730045X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.knosys.2017.01.034" target="_blank" >10.1016/j.knosys.2017.01.034</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient algorithms for mining colossal patterns in high dimensional databases

  • Popis výsledku v původním jazyce

    Mining association rules plays an important role in decision support systems. To mine strong association rules, it is necessary to mine frequent patterns. There are many algorithms that have been developed to efficiently mine frequent patterns, such as Apriori, Eclat, FP-Growth, PrePost, and FIN. However, these are only efficient with a small number of items in the database. When a database has a large number of items (from thousands to hundreds of thousands) but the number of transactions is small, these algorithms cannot run when the minimum support threshold is also small (because the search space is huge). This thus causes the problem of mining colossal patterns in high dimensional databases. In 2012, Sohrabi and Barforoush proposed the BVBUC algorithm for training colossal patterns based on a bottom up scheme. However, this needs more time to check subsets and supersets, because it generates a lot of candidates and consumes more memory to store these. In this paper we propose new, efficient algorithms for mining colossal patterns. Firstly, the CP (Colossal Pattern)-tree is designed. Next, we develop two theorems to rapidly compute patterns of nodes and prune nodes without the loss of information in colossal patterns. Based on the CP-tree and these theorems, an algorithm (named CP-Miner) is proposed to solve the problem of mining colossal patterns. A Sorting strategy for efficiently mining colossal patterns is thus developed. This strategy helps to reduce the number of significant candidates and the time needed to check subsets and supersets. The PCP-Miner algorithm, which Uses this strategy, is then proposed, and we also conduct experiments to show the efficiency of these algorithms. (C) 2017 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Efficient algorithms for mining colossal patterns in high dimensional databases

  • Popis výsledku anglicky

    Mining association rules plays an important role in decision support systems. To mine strong association rules, it is necessary to mine frequent patterns. There are many algorithms that have been developed to efficiently mine frequent patterns, such as Apriori, Eclat, FP-Growth, PrePost, and FIN. However, these are only efficient with a small number of items in the database. When a database has a large number of items (from thousands to hundreds of thousands) but the number of transactions is small, these algorithms cannot run when the minimum support threshold is also small (because the search space is huge). This thus causes the problem of mining colossal patterns in high dimensional databases. In 2012, Sohrabi and Barforoush proposed the BVBUC algorithm for training colossal patterns based on a bottom up scheme. However, this needs more time to check subsets and supersets, because it generates a lot of candidates and consumes more memory to store these. In this paper we propose new, efficient algorithms for mining colossal patterns. Firstly, the CP (Colossal Pattern)-tree is designed. Next, we develop two theorems to rapidly compute patterns of nodes and prune nodes without the loss of information in colossal patterns. Based on the CP-tree and these theorems, an algorithm (named CP-Miner) is proposed to solve the problem of mining colossal patterns. A Sorting strategy for efficiently mining colossal patterns is thus developed. This strategy helps to reduce the number of significant candidates and the time needed to check subsets and supersets. The PCP-Miner algorithm, which Uses this strategy, is then proposed, and we also conduct experiments to show the efficiency of these algorithms. (C) 2017 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge-Based Systems

  • ISSN

    0950-7051

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    75-89

  • Kód UT WoS článku

    000395604800007

  • EID výsledku v databázi Scopus

    2-s2.0-85011271399