MATLAB PARALLEL CODES FOR 3D SLOPE STABILITY BENCHMARKS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10241938" target="_blank" >RIV/61989100:27240/17:10241938 - isvavai.cz</a>
Výsledek na webu
<a href="http://congress.cimne.com/complas2017/frontal/Doc/EbookCOMPLAS2017.pdf" target="_blank" >http://congress.cimne.com/complas2017/frontal/Doc/EbookCOMPLAS2017.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MATLAB PARALLEL CODES FOR 3D SLOPE STABILITY BENCHMARKS
Popis výsledku v původním jazyce
This contribution is focused on a description of implementation details for solver related to the slope stability benchmarks in 3D. Such problems are formulated by the standard elastoplastic models containing the Mohr-Coulomb yield criterion and by the limit analysis of collapse states. The implicit Euler method and higher order finite elements are used for discretization. The discretized problem is solved by non-smooth Newton-like methods in combination with incremental methods of limit load analysis. In this standard approach, we propose several innovative techniques. Firstly, we use recently developed sub-differential based constitutive solution schemes. Such an approach is suitable for non-smooth yield criteria, and leads better return-mapping algorithms. For example, a priori decision criteria for each return-type or simplified construction of consistent tangent operators are applied. The parallel codes are developed in MATLAB using Parallel Computing Toolbox. For parallel implementation of linear systems, we use the TFETI domain decomposition method. It is a non-overlapping method where the Lagrange multipliers are used to enforce continuity on the subdomain interfaces and satisfaction of the Dirichlet boundary conditions.
Název v anglickém jazyce
MATLAB PARALLEL CODES FOR 3D SLOPE STABILITY BENCHMARKS
Popis výsledku anglicky
This contribution is focused on a description of implementation details for solver related to the slope stability benchmarks in 3D. Such problems are formulated by the standard elastoplastic models containing the Mohr-Coulomb yield criterion and by the limit analysis of collapse states. The implicit Euler method and higher order finite elements are used for discretization. The discretized problem is solved by non-smooth Newton-like methods in combination with incremental methods of limit load analysis. In this standard approach, we propose several innovative techniques. Firstly, we use recently developed sub-differential based constitutive solution schemes. Such an approach is suitable for non-smooth yield criteria, and leads better return-mapping algorithms. For example, a priori decision criteria for each return-type or simplified construction of consistent tangent operators are applied. The parallel codes are developed in MATLAB using Parallel Computing Toolbox. For parallel implementation of linear systems, we use the TFETI domain decomposition method. It is a non-overlapping method where the Lagrange multipliers are used to enforce continuity on the subdomain interfaces and satisfaction of the Dirichlet boundary conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017
ISBN
978-84-946909-6-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
989-997
Název nakladatele
International Center for numerical methods in Engineering (CIMNE)
Místo vydání
Barcelona
Místo konání akce
Barcelona
Datum konání akce
5. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000417380400093