Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10237629" target="_blank" >RIV/61989100:27240/18:10237629 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/18:10237629
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8260922" target="_blank" >http://ieeexplore.ieee.org/document/8260922</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSTE.2018.2794515" target="_blank" >10.1109/TSTE.2018.2794515</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation
Popis výsledku v původním jazyce
The wind power is primarily induced by local wind speed, whose accurate daily forecasts are important for the planning of the unstable power generation and its integration into the electrical grid. The main problem of the wind speed or direct output power forecasting is its intermittent nature due to the high correlation with chaotic large-scale pattern atmospheric circulation processes which together with local characteristics and anomalies largely influence its temporal-flow. Numerical global weather systems solve sets of differential equations to model the time-change of each grid cell in several atmospheric layers. They provide only rough short-term surface wind speed prognoses which are not entirely adequate to specific local conditions, e.g. the wind farm siting, surrounding terrain and ground level (hub height). Statistical methods using historical observations can particularize daily forecasts or calculate independent predictions for several hours. Extended polynomial networks can produce rational substitution sum terms, in all the nodes in consideration of data samples, to decompose and substitute for the general linear partial differential equation, being able to describe the local atmospheric dynamics. The designed method using the inverse Laplace transformation aims at the formation of stand-alone spatial derivative models which represent current local weather conditions for a trained input-output time-shift to predict the daily wind power up to 12 hours ahead. The proposed intra-day multi-step predictions are more precise than those based on middle-term numerical forecasts or adaptive intelligence techniques using local time-series, which are worthless beyond a few hours.
Název v anglickém jazyce
Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation
Popis výsledku anglicky
The wind power is primarily induced by local wind speed, whose accurate daily forecasts are important for the planning of the unstable power generation and its integration into the electrical grid. The main problem of the wind speed or direct output power forecasting is its intermittent nature due to the high correlation with chaotic large-scale pattern atmospheric circulation processes which together with local characteristics and anomalies largely influence its temporal-flow. Numerical global weather systems solve sets of differential equations to model the time-change of each grid cell in several atmospheric layers. They provide only rough short-term surface wind speed prognoses which are not entirely adequate to specific local conditions, e.g. the wind farm siting, surrounding terrain and ground level (hub height). Statistical methods using historical observations can particularize daily forecasts or calculate independent predictions for several hours. Extended polynomial networks can produce rational substitution sum terms, in all the nodes in consideration of data samples, to decompose and substitute for the general linear partial differential equation, being able to describe the local atmospheric dynamics. The designed method using the inverse Laplace transformation aims at the formation of stand-alone spatial derivative models which represent current local weather conditions for a trained input-output time-shift to predict the daily wind power up to 12 hours ahead. The proposed intra-day multi-step predictions are more precise than those based on middle-term numerical forecasts or adaptive intelligence techniques using local time-series, which are worthless beyond a few hours.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Sustainable Energy
ISSN
1949-3029
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1529-1539
Kód UT WoS článku
000445275900004
EID výsledku v databázi Scopus
2-s2.0-85041675702