Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10237629" target="_blank" >RIV/61989100:27240/18:10237629 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/18:10237629

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/8260922" target="_blank" >http://ieeexplore.ieee.org/document/8260922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSTE.2018.2794515" target="_blank" >10.1109/TSTE.2018.2794515</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation

  • Popis výsledku v původním jazyce

    The wind power is primarily induced by local wind speed, whose accurate daily forecasts are important for the planning of the unstable power generation and its integration into the electrical grid. The main problem of the wind speed or direct output power forecasting is its intermittent nature due to the high correlation with chaotic large-scale pattern atmospheric circulation processes which together with local characteristics and anomalies largely influence its temporal-flow. Numerical global weather systems solve sets of differential equations to model the time-change of each grid cell in several atmospheric layers. They provide only rough short-term surface wind speed prognoses which are not entirely adequate to specific local conditions, e.g. the wind farm siting, surrounding terrain and ground level (hub height). Statistical methods using historical observations can particularize daily forecasts or calculate independent predictions for several hours. Extended polynomial networks can produce rational substitution sum terms, in all the nodes in consideration of data samples, to decompose and substitute for the general linear partial differential equation, being able to describe the local atmospheric dynamics. The designed method using the inverse Laplace transformation aims at the formation of stand-alone spatial derivative models which represent current local weather conditions for a trained input-output time-shift to predict the daily wind power up to 12 hours ahead. The proposed intra-day multi-step predictions are more precise than those based on middle-term numerical forecasts or adaptive intelligence techniques using local time-series, which are worthless beyond a few hours.

  • Název v anglickém jazyce

    Direct Wind Power Forecasting using a Polynomial Decomposition of the General Differential Equation

  • Popis výsledku anglicky

    The wind power is primarily induced by local wind speed, whose accurate daily forecasts are important for the planning of the unstable power generation and its integration into the electrical grid. The main problem of the wind speed or direct output power forecasting is its intermittent nature due to the high correlation with chaotic large-scale pattern atmospheric circulation processes which together with local characteristics and anomalies largely influence its temporal-flow. Numerical global weather systems solve sets of differential equations to model the time-change of each grid cell in several atmospheric layers. They provide only rough short-term surface wind speed prognoses which are not entirely adequate to specific local conditions, e.g. the wind farm siting, surrounding terrain and ground level (hub height). Statistical methods using historical observations can particularize daily forecasts or calculate independent predictions for several hours. Extended polynomial networks can produce rational substitution sum terms, in all the nodes in consideration of data samples, to decompose and substitute for the general linear partial differential equation, being able to describe the local atmospheric dynamics. The designed method using the inverse Laplace transformation aims at the formation of stand-alone spatial derivative models which represent current local weather conditions for a trained input-output time-shift to predict the daily wind power up to 12 hours ahead. The proposed intra-day multi-step predictions are more precise than those based on middle-term numerical forecasts or adaptive intelligence techniques using local time-series, which are worthless beyond a few hours.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Sustainable Energy

  • ISSN

    1949-3029

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1529-1539

  • Kód UT WoS článku

    000445275900004

  • EID výsledku v databázi Scopus

    2-s2.0-85041675702