Different approaches for face authentication as part of a multimodal biometrics system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10238881" target="_blank" >RIV/61989100:27240/18:10238881 - isvavai.cz</a>
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/2547" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/2547</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v16i1.2547" target="_blank" >10.15598/aeee.v16i1.2547</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Different approaches for face authentication as part of a multimodal biometrics system
Popis výsledku v původním jazyce
This paper describes different approaches for the face authentication from the features and classification abilities point of view. Authors compare two types of features - Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) including their combination. These parameters are classified using Multilayer Neural Network (MLNN) and Support Vector Machines (SVM). Face authentication consists of several steps. The first step contains Viola-Jones algorithm for face detection. Authors resize the detected face for a fixed vector and afterwards, it is converted into grayscale. Next, feature extraction with a simple Min-Max normalization is applied. Obtained parameters are evaluated by classifiers and for each detected face, authors get posterior probability as the output of the classifier. Different approaches for face authentication are compared with each other using False Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER), Receiver Operating Characteristic (ROC) and Detection Error Tradeoff (DET) curves. The results are verified with AR Face Database and elaborated in a feature extraction and classifier design point of view. Best results were achieved by HOG feature for SVM classifier. Detailed results are listed in the text below. (C) 2018 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Název v anglickém jazyce
Different approaches for face authentication as part of a multimodal biometrics system
Popis výsledku anglicky
This paper describes different approaches for the face authentication from the features and classification abilities point of view. Authors compare two types of features - Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) including their combination. These parameters are classified using Multilayer Neural Network (MLNN) and Support Vector Machines (SVM). Face authentication consists of several steps. The first step contains Viola-Jones algorithm for face detection. Authors resize the detected face for a fixed vector and afterwards, it is converted into grayscale. Next, feature extraction with a simple Min-Max normalization is applied. Obtained parameters are evaluated by classifiers and for each detected face, authors get posterior probability as the output of the classifier. Different approaches for face authentication are compared with each other using False Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER), Receiver Operating Characteristic (ROC) and Detection Error Tradeoff (DET) curves. The results are verified with AR Face Database and elaborated in a feature extraction and classifier design point of view. Best results were achieved by HOG feature for SVM classifier. Detailed results are listed in the text below. (C) 2018 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
118-124
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85044927159