Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241599" target="_blank" >RIV/61989100:27240/18:10241599 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://journal.utem.edu.my/index.php/jtec/article/view/3745/2618" target="_blank" >http://journal.utem.edu.my/index.php/jtec/article/view/3745/2618</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach

  • Popis výsledku v původním jazyce

    Medical image segmentation has been a challenging task for a long time. In the current age, we are overcrowded by medical image data acquired from various sources, such as CT, MR, ultrasound and many others. We usually need to perform segmentation, detection and extraction of objects of interest for further processing. This process includes quantification of parameters to determine a clinical evaluation. There are multiregional segmentation methods that allow for differentiation of individual morphological objects. However, the commonly used hard thresholding approaches lack of robustness in noisy environment leading to an incorrect pixel classification. Image segmentation based on fuzzy set theory brings much more effective alternative for image thresholding gained by local aggregation, making this method more noise resistive. We consciously performed a comparative analysis of articular cartilage and blood vessels segmentation. It was an obvious method utilization in which the native image features are badly recognizable and the objects features are well observed.

  • Název v anglickém jazyce

    Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach

  • Popis výsledku anglicky

    Medical image segmentation has been a challenging task for a long time. In the current age, we are overcrowded by medical image data acquired from various sources, such as CT, MR, ultrasound and many others. We usually need to perform segmentation, detection and extraction of objects of interest for further processing. This process includes quantification of parameters to determine a clinical evaluation. There are multiregional segmentation methods that allow for differentiation of individual morphological objects. However, the commonly used hard thresholding approaches lack of robustness in noisy environment leading to an incorrect pixel classification. Image segmentation based on fuzzy set theory brings much more effective alternative for image thresholding gained by local aggregation, making this method more noise resistive. We consciously performed a comparative analysis of articular cartilage and blood vessels segmentation. It was an obvious method utilization in which the native image features are badly recognizable and the objects features are well observed.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Telecommunication, Electronic and Computer Engineering

  • ISSN

    2180-1843

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    1-8

  • Stát vydavatele periodika

    MY - Malajsie

  • Počet stran výsledku

    5

  • Strana od-do

    109-113

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85045181709