Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241599" target="_blank" >RIV/61989100:27240/18:10241599 - isvavai.cz</a>
Výsledek na webu
<a href="http://journal.utem.edu.my/index.php/jtec/article/view/3745/2618" target="_blank" >http://journal.utem.edu.my/index.php/jtec/article/view/3745/2618</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach
Popis výsledku v původním jazyce
Medical image segmentation has been a challenging task for a long time. In the current age, we are overcrowded by medical image data acquired from various sources, such as CT, MR, ultrasound and many others. We usually need to perform segmentation, detection and extraction of objects of interest for further processing. This process includes quantification of parameters to determine a clinical evaluation. There are multiregional segmentation methods that allow for differentiation of individual morphological objects. However, the commonly used hard thresholding approaches lack of robustness in noisy environment leading to an incorrect pixel classification. Image segmentation based on fuzzy set theory brings much more effective alternative for image thresholding gained by local aggregation, making this method more noise resistive. We consciously performed a comparative analysis of articular cartilage and blood vessels segmentation. It was an obvious method utilization in which the native image features are badly recognizable and the objects features are well observed.
Název v anglickém jazyce
Utilization of medical image soft segmentation based on fuzzy sets classification process modified by local aggregation approach
Popis výsledku anglicky
Medical image segmentation has been a challenging task for a long time. In the current age, we are overcrowded by medical image data acquired from various sources, such as CT, MR, ultrasound and many others. We usually need to perform segmentation, detection and extraction of objects of interest for further processing. This process includes quantification of parameters to determine a clinical evaluation. There are multiregional segmentation methods that allow for differentiation of individual morphological objects. However, the commonly used hard thresholding approaches lack of robustness in noisy environment leading to an incorrect pixel classification. Image segmentation based on fuzzy set theory brings much more effective alternative for image thresholding gained by local aggregation, making this method more noise resistive. We consciously performed a comparative analysis of articular cartilage and blood vessels segmentation. It was an obvious method utilization in which the native image features are badly recognizable and the objects features are well observed.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Telecommunication, Electronic and Computer Engineering
ISSN
2180-1843
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1-8
Stát vydavatele periodika
MY - Malajsie
Počet stran výsledku
5
Strana od-do
109-113
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85045181709