Application of Particle Swarm Optimization to Create Multiple-Choice Tests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241900" target="_blank" >RIV/61989100:27240/18:10241900 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10162364-201811-201811050001-201811050001-1405-1423" target="_blank" >http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10162364-201811-201811050001-201811050001-1405-1423</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.6688/JISE.201811_34(6).0004" target="_blank" >10.6688/JISE.201811_34(6).0004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Particle Swarm Optimization to Create Multiple-Choice Tests
Popis výsledku v původním jazyce
Generating tests from question banks by using manually extracted items or involving random method consumes a great deal of time and effort. At the same time, the quality of the resulting tests is often not high. The generated tests may not entirely meet the requirements formulated in advance. Therefore, this study develops innovative ways to enhance this process by optimizing the execution time and generating results that closely meet the extraction requirements. The paper proposes the use of Particle Swarm Optimization (PSO) to generate multiple-choice tests based on assumed objective levels of difficulty. The experimental results reveal that PSO speed-ups the extraction process, and improves the quality of tests in comparison with the results produced by previously used methods such as Random or Genetic Algorithm (GA) optimized methods. In addition, PSO shows to be more efficient than GA and random selection in most criteria, such as execution time, search space, stability, and standard deviation.
Název v anglickém jazyce
Application of Particle Swarm Optimization to Create Multiple-Choice Tests
Popis výsledku anglicky
Generating tests from question banks by using manually extracted items or involving random method consumes a great deal of time and effort. At the same time, the quality of the resulting tests is often not high. The generated tests may not entirely meet the requirements formulated in advance. Therefore, this study develops innovative ways to enhance this process by optimizing the execution time and generating results that closely meet the extraction requirements. The paper proposes the use of Particle Swarm Optimization (PSO) to generate multiple-choice tests based on assumed objective levels of difficulty. The experimental results reveal that PSO speed-ups the extraction process, and improves the quality of tests in comparison with the results produced by previously used methods such as Random or Genetic Algorithm (GA) optimized methods. In addition, PSO shows to be more efficient than GA and random selection in most criteria, such as execution time, search space, stability, and standard deviation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Information Science and Engineering
ISSN
1016-2364
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
19
Strana od-do
1405-1423
Kód UT WoS článku
000451364100004
EID výsledku v databázi Scopus
2-s2.0-85056740523