Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Swarm Optimization for Extracting Multiple-Choice Tests From Question Banks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248865" target="_blank" >RIV/61989100:27240/21:10248865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9348944" target="_blank" >https://ieeexplore.ieee.org/document/9348944</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3057515" target="_blank" >10.1109/ACCESS.2021.3057515</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Swarm Optimization for Extracting Multiple-Choice Tests From Question Banks

  • Popis výsledku v původním jazyce

    In this study, a novel method for generating multiple-choice tests is presented, which extracts the required number of tests of the same levels of difficulty in a single attempt and approximates the difficulty level requirement given by users. We propose an approach using parallelism and Pareto optimization for multi-swarm migration in a particle swarm optimization (PSO) algorithm. Multi-PSO is proposed for shortening the computing time. The proposed migration of PSOs increases the diversity of tests and controls the overlap of extracted tests. The experimental results show that the proposed method can generate many tests from question banks satisfying predefined levels of difficulty. Additionally, the developed method is shown to be effective in terms of many criteria when compared with other methods such as manually extracted tests, a simulated annealing algorithm (SA), random methods and PSO-based approaches in terms of the number of successful solutions, accuracy, standard deviation, search speed, and the number of questions overlapping between the exam questions, as well as for changing the search space, changing the number of individuals, changing the number of swarms, and changing the difficulty requirements.

  • Název v anglickém jazyce

    Multi-Swarm Optimization for Extracting Multiple-Choice Tests From Question Banks

  • Popis výsledku anglicky

    In this study, a novel method for generating multiple-choice tests is presented, which extracts the required number of tests of the same levels of difficulty in a single attempt and approximates the difficulty level requirement given by users. We propose an approach using parallelism and Pareto optimization for multi-swarm migration in a particle swarm optimization (PSO) algorithm. Multi-PSO is proposed for shortening the computing time. The proposed migration of PSOs increases the diversity of tests and controls the overlap of extracted tests. The experimental results show that the proposed method can generate many tests from question banks satisfying predefined levels of difficulty. Additionally, the developed method is shown to be effective in terms of many criteria when compared with other methods such as manually extracted tests, a simulated annealing algorithm (SA), random methods and PSO-based approaches in terms of the number of successful solutions, accuracy, standard deviation, search speed, and the number of questions overlapping between the exam questions, as well as for changing the search space, changing the number of individuals, changing the number of swarms, and changing the difficulty requirements.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    14.3.2021

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    32131-32148

  • Kód UT WoS článku

    000623414400001

  • EID výsledku v databázi Scopus