Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Statistical-based system combination approach to gain advantages over different machine translation systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242519" target="_blank" >RIV/61989100:27240/19:10242519 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cell.com/heliyon/fulltext/S2405-8440(19)36164-X#%20" target="_blank" >https://www.cell.com/heliyon/fulltext/S2405-8440(19)36164-X#%20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2019.e02504" target="_blank" >10.1016/j.heliyon.2019.e02504</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Statistical-based system combination approach to gain advantages over different machine translation systems

  • Popis výsledku v původním jazyce

    Every machine translation system has some advantages. We propose an improved statistical system combination approach to achieve the advantages of existing machine translation systems. The primary task is to score all the phrases of the outputs of different machine translation systems selected for combination. Three steps are involved in the proposed statistical system combination approach, viz., alignment, decoding, and scoring. Pair alignment is done in the first step to prevent duplication so that only a single phrase is chosen from various phrases containing the same information. Thus the alignment and scoring strategy are implemented in our approach. Hypotheses are built in the second step. In the third step, we calculate the scores for all the hypotheses. The hypothesis with the highest score is chosen as the final translated output. Wrong scoring can mislead to identify the best part from different systems. It may be noted that a particular phrase may appear in various ways in different translations. To resolve the challenges, we incorporate WordNet in the alignment phase and word2vec in the scoring phase along with the existing factors. We find that the system combination model using WordNet and word2vec injection improves the machine translation accuracy. In this work, we have merged three systems viz., Hierarchical machine translation system, Bing Microsoft Translate, and Google Translate. The broad tests of translation on eight language pairs with benchmark datasets demonstrate that the proposed system achieves better quality than the individual systems and the state-of-the-art system combination models. (C) 2019 The Authors

  • Název v anglickém jazyce

    Statistical-based system combination approach to gain advantages over different machine translation systems

  • Popis výsledku anglicky

    Every machine translation system has some advantages. We propose an improved statistical system combination approach to achieve the advantages of existing machine translation systems. The primary task is to score all the phrases of the outputs of different machine translation systems selected for combination. Three steps are involved in the proposed statistical system combination approach, viz., alignment, decoding, and scoring. Pair alignment is done in the first step to prevent duplication so that only a single phrase is chosen from various phrases containing the same information. Thus the alignment and scoring strategy are implemented in our approach. Hypotheses are built in the second step. In the third step, we calculate the scores for all the hypotheses. The hypothesis with the highest score is chosen as the final translated output. Wrong scoring can mislead to identify the best part from different systems. It may be noted that a particular phrase may appear in various ways in different translations. To resolve the challenges, we incorporate WordNet in the alignment phase and word2vec in the scoring phase along with the existing factors. We find that the system combination model using WordNet and word2vec injection improves the machine translation accuracy. In this work, we have merged three systems viz., Hierarchical machine translation system, Bing Microsoft Translate, and Google Translate. The broad tests of translation on eight language pairs with benchmark datasets demonstrate that the proposed system achieves better quality than the individual systems and the state-of-the-art system combination models. (C) 2019 The Authors

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85072698660