Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243879" target="_blank" >RIV/61989100:27240/19:10243879 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8790705" target="_blank" >https://ieeexplore.ieee.org/document/8790705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2019.2933717" target="_blank" >10.1109/ACCESS.2019.2933717</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram
Popis výsledku v původním jazyce
This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.
Název v anglickém jazyce
Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram
Popis výsledku anglicky
This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
131758-131784
Kód UT WoS článku
000498623500004
EID výsledku v databázi Scopus
2-s2.0-85077956663