Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243879" target="_blank" >RIV/61989100:27240/19:10243879 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8790705" target="_blank" >https://ieeexplore.ieee.org/document/8790705</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2019.2933717" target="_blank" >10.1109/ACCESS.2019.2933717</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram

  • Popis výsledku v původním jazyce

    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC &gt; 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC &gt; 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC &gt; 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC &gt; 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.

  • Název v anglickém jazyce

    Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram

  • Popis výsledku anglicky

    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC &gt; 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC &gt; 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC &gt; 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC &gt; 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    2019

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    131758-131784

  • Kód UT WoS článku

    000498623500004

  • EID výsledku v databázi Scopus

    2-s2.0-85077956663