Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246154" target="_blank" >RIV/61989100:27240/20:10246154 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9288669" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9288669</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.3043496" target="_blank" >10.1109/ACCESS.2020.3043496</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography

  • Popis výsledku v původním jazyce

    Fetal phonocardiography (fPCG) is a non-invasive technique for detection of fetal heart sounds (fHSs), murmurs and vibrations. This acoustic recording is passive and provides an alternative low-cost method to ultrasonographic cardiotocography (CTG). Unfortunately, the fPCG signal is often disturbed by the wide range of artifacts that make it difficult to obtain significant diagnostic information from this signal. The study focuses on the filtering of an fPCG signal containing three types of noise (ambient noise, Gaussian noise, and movement artifacts of the mother and the fetus) having different amplitudes. Three advanced signal processing methods: empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and adaptive wavelet transform (AWT) were tested and compared. The evaluation of the extraction was performed by determining the accuracy of S1 sounds detection and by determining the fetal heart rate (fHR). The evaluation of the effectiveness of the method was performed using signal-to-noise ratio (SNR), mean error of heart interval measurement (|ΔTi|), and the statistical parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). Using the EMD method, ACC &gt; 95% was achieved in 7 out of 12 types and levels of interference with average values of ACC = 88.73%, SE = 91.57%, PPV = 94.80% and F1 = 93.12%. Using the EEMD method, ACC &gt; 95% was achieved in 9 out of 12 types and levels of interference with average values of ACC = 97.49%, SE = 97.89%, PPV = 99.53% and F1 = 98.69%. In this study, the best results were achieved using the AWT method, which provided ACC &gt; 95% in all 12 types and levels of interference with average values of ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 = 99.67%. CCBY

  • Název v anglickém jazyce

    Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography

  • Popis výsledku anglicky

    Fetal phonocardiography (fPCG) is a non-invasive technique for detection of fetal heart sounds (fHSs), murmurs and vibrations. This acoustic recording is passive and provides an alternative low-cost method to ultrasonographic cardiotocography (CTG). Unfortunately, the fPCG signal is often disturbed by the wide range of artifacts that make it difficult to obtain significant diagnostic information from this signal. The study focuses on the filtering of an fPCG signal containing three types of noise (ambient noise, Gaussian noise, and movement artifacts of the mother and the fetus) having different amplitudes. Three advanced signal processing methods: empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and adaptive wavelet transform (AWT) were tested and compared. The evaluation of the extraction was performed by determining the accuracy of S1 sounds detection and by determining the fetal heart rate (fHR). The evaluation of the effectiveness of the method was performed using signal-to-noise ratio (SNR), mean error of heart interval measurement (|ΔTi|), and the statistical parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). Using the EMD method, ACC &gt; 95% was achieved in 7 out of 12 types and levels of interference with average values of ACC = 88.73%, SE = 91.57%, PPV = 94.80% and F1 = 93.12%. Using the EEMD method, ACC &gt; 95% was achieved in 9 out of 12 types and levels of interference with average values of ACC = 97.49%, SE = 97.89%, PPV = 99.53% and F1 = 98.69%. In this study, the best results were achieved using the AWT method, which provided ACC &gt; 95% in all 12 types and levels of interference with average values of ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 = 99.67%. CCBY

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000600842600001

  • EID výsledku v databázi Scopus

    2-s2.0-85097929169