Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246154" target="_blank" >RIV/61989100:27240/20:10246154 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9288669" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9288669</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.3043496" target="_blank" >10.1109/ACCESS.2020.3043496</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography
Popis výsledku v původním jazyce
Fetal phonocardiography (fPCG) is a non-invasive technique for detection of fetal heart sounds (fHSs), murmurs and vibrations. This acoustic recording is passive and provides an alternative low-cost method to ultrasonographic cardiotocography (CTG). Unfortunately, the fPCG signal is often disturbed by the wide range of artifacts that make it difficult to obtain significant diagnostic information from this signal. The study focuses on the filtering of an fPCG signal containing three types of noise (ambient noise, Gaussian noise, and movement artifacts of the mother and the fetus) having different amplitudes. Three advanced signal processing methods: empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and adaptive wavelet transform (AWT) were tested and compared. The evaluation of the extraction was performed by determining the accuracy of S1 sounds detection and by determining the fetal heart rate (fHR). The evaluation of the effectiveness of the method was performed using signal-to-noise ratio (SNR), mean error of heart interval measurement (|ΔTi|), and the statistical parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). Using the EMD method, ACC > 95% was achieved in 7 out of 12 types and levels of interference with average values of ACC = 88.73%, SE = 91.57%, PPV = 94.80% and F1 = 93.12%. Using the EEMD method, ACC > 95% was achieved in 9 out of 12 types and levels of interference with average values of ACC = 97.49%, SE = 97.89%, PPV = 99.53% and F1 = 98.69%. In this study, the best results were achieved using the AWT method, which provided ACC > 95% in all 12 types and levels of interference with average values of ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 = 99.67%. CCBY
Název v anglickém jazyce
Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography
Popis výsledku anglicky
Fetal phonocardiography (fPCG) is a non-invasive technique for detection of fetal heart sounds (fHSs), murmurs and vibrations. This acoustic recording is passive and provides an alternative low-cost method to ultrasonographic cardiotocography (CTG). Unfortunately, the fPCG signal is often disturbed by the wide range of artifacts that make it difficult to obtain significant diagnostic information from this signal. The study focuses on the filtering of an fPCG signal containing three types of noise (ambient noise, Gaussian noise, and movement artifacts of the mother and the fetus) having different amplitudes. Three advanced signal processing methods: empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and adaptive wavelet transform (AWT) were tested and compared. The evaluation of the extraction was performed by determining the accuracy of S1 sounds detection and by determining the fetal heart rate (fHR). The evaluation of the effectiveness of the method was performed using signal-to-noise ratio (SNR), mean error of heart interval measurement (|ΔTi|), and the statistical parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). Using the EMD method, ACC > 95% was achieved in 7 out of 12 types and levels of interference with average values of ACC = 88.73%, SE = 91.57%, PPV = 94.80% and F1 = 93.12%. Using the EEMD method, ACC > 95% was achieved in 9 out of 12 types and levels of interference with average values of ACC = 97.49%, SE = 97.89%, PPV = 99.53% and F1 = 98.69%. In this study, the best results were achieved using the AWT method, which provided ACC > 95% in all 12 types and levels of interference with average values of ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 = 99.67%. CCBY
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000600842600001
EID výsledku v databázi Scopus
2-s2.0-85097929169