Modified Genetic Algorithm with Sorting Process for Wireless Sensor Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246984" target="_blank" >RIV/61989100:27240/20:10246984 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-981-15-0324-5_33" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-981-15-0324-5_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-15-0324-5_33" target="_blank" >10.1007/978-981-15-0324-5_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modified Genetic Algorithm with Sorting Process for Wireless Sensor Network
Popis výsledku v původním jazyce
The genetic algorithm is widely used in optimization problems, in which, a population of candidate solutions is mutated and altered toward better solutions. Usually, genetic algorithm works in optimization problem with a fitness function which is used to evaluate the feasibility and quality of a solution. However, sometimes, it is hard to define the fitness function when there are several optimization objectives, especially only one solution can be selected from a population. In this paper, we modified genetic algorithms with a novel-sorting process to solve the above problem. Two algorithms, the classic genetic algorithm and newly proposed recently M-Genetic algorithm, are simulated and altered by embedding the novel-sorting process. Besides, both the algorithms and their alteration versions are applied into wireless sensor network for locating Relay nodes. The sensor node loss and package loss number are reduced in genetic algorithms with our sorting process compared to the original ones. (C) 2020, Springer Nature Singapore Pte Ltd.
Název v anglickém jazyce
Modified Genetic Algorithm with Sorting Process for Wireless Sensor Network
Popis výsledku anglicky
The genetic algorithm is widely used in optimization problems, in which, a population of candidate solutions is mutated and altered toward better solutions. Usually, genetic algorithm works in optimization problem with a fitness function which is used to evaluate the feasibility and quality of a solution. However, sometimes, it is hard to define the fitness function when there are several optimization objectives, especially only one solution can be selected from a population. In this paper, we modified genetic algorithms with a novel-sorting process to solve the above problem. Two algorithms, the classic genetic algorithm and newly proposed recently M-Genetic algorithm, are simulated and altered by embedding the novel-sorting process. Besides, both the algorithms and their alteration versions are applied into wireless sensor network for locating Relay nodes. The sensor node loss and package loss number are reduced in genetic algorithms with our sorting process compared to the original ones. (C) 2020, Springer Nature Singapore Pte Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Věda bez hranic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 1059
ISBN
978-981-15-0323-8
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
8
Strana od-do
381-388
Název nakladatele
Springer
Místo vydání
Singapur
Místo konání akce
Ostrava
Datum konání akce
21. 3. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—