Community Detection in Complex Networks Using Algorithms Based on K-Means and Entropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246985" target="_blank" >RIV/61989100:27240/20:10246985 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-63007-2_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-63007-2_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63007-2_19" target="_blank" >10.1007/978-3-030-63007-2_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Community Detection in Complex Networks Using Algorithms Based on K-Means and Entropy
Popis výsledku v původním jazyce
Detecting community structures in complex networks such as social networks, computer networks, citation networks, etc. is one of the most interesting topics to many researchers, there are many works focus on this research area recently. However, the biggest difficulty is how to detect the number of complex network communities, the accuracy of the algorithms and the diversity in the properties of each complex network. In this paper, we propose an algorithm to detect the structure of communities in a complex network based on K-means algorithm and Entropy. Moreover, we also evaluated our algorithm on real-work and computer generate datasets, the results show that our approach is better than the others. (C) 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Community Detection in Complex Networks Using Algorithms Based on K-Means and Entropy
Popis výsledku anglicky
Detecting community structures in complex networks such as social networks, computer networks, citation networks, etc. is one of the most interesting topics to many researchers, there are many works focus on this research area recently. However, the biggest difficulty is how to detect the number of complex network communities, the accuracy of the algorithms and the diversity in the properties of each complex network. In this paper, we propose an algorithm to detect the structure of communities in a complex network based on K-means algorithm and Entropy. Moreover, we also evaluated our algorithm on real-work and computer generate datasets, the results show that our approach is better than the others. (C) 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12496
ISBN
978-3-030-63006-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
241-251
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Danang
Datum konání akce
30. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—