Wind-Power Intra-day Statistical Predictions Using Sum PDE Models of Polynomial Networks Combining the PDE Decomposition with Operational Calculus Transforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10245223" target="_blank" >RIV/61989100:27240/21:10245223 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-49336-3_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49336-3_8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wind-Power Intra-day Statistical Predictions Using Sum PDE Models of Polynomial Networks Combining the PDE Decomposition with Operational Calculus Transforms
Popis výsledku v původním jazyce
Chaotic processes in complex atmospheric circulation and fluctuation waves in local conditions cause difficulties in wind power prediction. Physical models of Numerical Weather Prediction (NWP) systems produce only coarse 24-48-h prognoses of wind speed, which are not entirely assimilated to local specifics and usually delayed to be produced every 6-h. Artificial Intelligence (AI) techniques can process daily forecasts or calculate independent statistical predictions using historical time-series in a few-hour horizon. The presented unconventional neuro-computing method elicits Polynomial Neural Network (PNN) structures to decompose the n-variable Partial Differential Equation (PDE), into a set of node-converted sub-PDEs. The inverse Laplace transformation is applied to the node produced rational terms, using Operational Calculus (OC), to obtain the originals of unknown node functions. The complete composite PDE model includes the sum of selected sub-PDE solutions, which allow detail representation of complex weather patterns. Self-adapting statistical models are developed using a specific increased inputs->-output time-shift to represent the current local near-ground conditions for predictions in the trained time-horizon of 1-12 h. The presented multi-step procedure forming statistical AI models allow more accurate intra-day wind power predictions than processed middle-scale numerical forecasts.
Název v anglickém jazyce
Wind-Power Intra-day Statistical Predictions Using Sum PDE Models of Polynomial Networks Combining the PDE Decomposition with Operational Calculus Transforms
Popis výsledku anglicky
Chaotic processes in complex atmospheric circulation and fluctuation waves in local conditions cause difficulties in wind power prediction. Physical models of Numerical Weather Prediction (NWP) systems produce only coarse 24-48-h prognoses of wind speed, which are not entirely assimilated to local specifics and usually delayed to be produced every 6-h. Artificial Intelligence (AI) techniques can process daily forecasts or calculate independent statistical predictions using historical time-series in a few-hour horizon. The presented unconventional neuro-computing method elicits Polynomial Neural Network (PNN) structures to decompose the n-variable Partial Differential Equation (PDE), into a set of node-converted sub-PDEs. The inverse Laplace transformation is applied to the node produced rational terms, using Operational Calculus (OC), to obtain the originals of unknown node functions. The complete composite PDE model includes the sum of selected sub-PDE solutions, which allow detail representation of complex weather patterns. Self-adapting statistical models are developed using a specific increased inputs->-output time-shift to represent the current local near-ground conditions for predictions in the trained time-horizon of 1-12 h. The presented multi-step procedure forming statistical AI models allow more accurate intra-day wind power predictions than processed middle-scale numerical forecasts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 1179
ISBN
978-3-030-49335-6
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
72-82
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Bhópál
Datum konání akce
10. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—