Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10245222" target="_blank" >RIV/61989100:27240/21:10245222 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-49345-5_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49345-5_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-49345-5_27" target="_blank" >10.1007/978-3-030-49345-5_27</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation

  • Popis výsledku v původním jazyce

    Precise forecasts of wind power are required as they allow full integration of wind farms into the electrical grid and their active operation. Their daily base poses a challenge due to the chaotic nature of global atmospheric dynamical processes resulting in local wind fluctuations and waves. Surface wind forecasts of NWP models are not fully adapted to local anomalies which can influence significantly in addition its temporal-flow. AI methods using historical observations can convert or refine forecasts in consideration of wind farm location, topography and hub positions. Their independent intra-day wind-power predictions are more precise then those based on NWP data as these are usually produced every 6 h with a delay. The designed AI method combines structures of polynomial networks with some mathematic techniques to decompose and substitute for the n-variable linear Partial Differential Equation, which allow complex representation of unknown dynamic systems. Particular 2-variable PDEs, produced in network nodes, are converted using the Laplace transformed derivatives. The inverse L-transformation is applied to the resulting pure rational terms to obtain the originals of unknown node functions, whose sum is the composite PDE model. Statistical models are developed with data samples from estimated periods of the last days which optimally represent spatial patterns in the current weather. They process the latest available data to predict wind power in the next 1-12 h according to the trained data inputs RIGHTWARDS ARROW output time-shift.

  • Název v anglickém jazyce

    Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation

  • Popis výsledku anglicky

    Precise forecasts of wind power are required as they allow full integration of wind farms into the electrical grid and their active operation. Their daily base poses a challenge due to the chaotic nature of global atmospheric dynamical processes resulting in local wind fluctuations and waves. Surface wind forecasts of NWP models are not fully adapted to local anomalies which can influence significantly in addition its temporal-flow. AI methods using historical observations can convert or refine forecasts in consideration of wind farm location, topography and hub positions. Their independent intra-day wind-power predictions are more precise then those based on NWP data as these are usually produced every 6 h with a delay. The designed AI method combines structures of polynomial networks with some mathematic techniques to decompose and substitute for the n-variable linear Partial Differential Equation, which allow complex representation of unknown dynamic systems. Particular 2-variable PDEs, produced in network nodes, are converted using the Laplace transformed derivatives. The inverse L-transformation is applied to the resulting pure rational terms to obtain the originals of unknown node functions, whose sum is the composite PDE model. Statistical models are developed with data samples from estimated periods of the last days which optimally represent spatial patterns in the current weather. They process the latest available data to predict wind power in the next 1-12 h according to the trained data inputs RIGHTWARDS ARROW output time-shift.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Systems and Computing. Volume 1182

  • ISBN

    978-3-030-49344-8

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Počet stran výsledku

    10

  • Strana od-do

    254-265

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Haidarábád

  • Datum konání akce

    13. 12. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku