Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10245222" target="_blank" >RIV/61989100:27240/21:10245222 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-49345-5_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49345-5_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-49345-5_27" target="_blank" >10.1007/978-3-030-49345-5_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation
Popis výsledku v původním jazyce
Precise forecasts of wind power are required as they allow full integration of wind farms into the electrical grid and their active operation. Their daily base poses a challenge due to the chaotic nature of global atmospheric dynamical processes resulting in local wind fluctuations and waves. Surface wind forecasts of NWP models are not fully adapted to local anomalies which can influence significantly in addition its temporal-flow. AI methods using historical observations can convert or refine forecasts in consideration of wind farm location, topography and hub positions. Their independent intra-day wind-power predictions are more precise then those based on NWP data as these are usually produced every 6 h with a delay. The designed AI method combines structures of polynomial networks with some mathematic techniques to decompose and substitute for the n-variable linear Partial Differential Equation, which allow complex representation of unknown dynamic systems. Particular 2-variable PDEs, produced in network nodes, are converted using the Laplace transformed derivatives. The inverse L-transformation is applied to the resulting pure rational terms to obtain the originals of unknown node functions, whose sum is the composite PDE model. Statistical models are developed with data samples from estimated periods of the last days which optimally represent spatial patterns in the current weather. They process the latest available data to predict wind power in the next 1-12 h according to the trained data inputs RIGHTWARDS ARROW output time-shift.
Název v anglickém jazyce
Wind Power Intra-day Multi-step Predictions Using PDE Sum Models of Polynomial Networks Based on the PDE Conversion and Substitution with the L-Transformation
Popis výsledku anglicky
Precise forecasts of wind power are required as they allow full integration of wind farms into the electrical grid and their active operation. Their daily base poses a challenge due to the chaotic nature of global atmospheric dynamical processes resulting in local wind fluctuations and waves. Surface wind forecasts of NWP models are not fully adapted to local anomalies which can influence significantly in addition its temporal-flow. AI methods using historical observations can convert or refine forecasts in consideration of wind farm location, topography and hub positions. Their independent intra-day wind-power predictions are more precise then those based on NWP data as these are usually produced every 6 h with a delay. The designed AI method combines structures of polynomial networks with some mathematic techniques to decompose and substitute for the n-variable linear Partial Differential Equation, which allow complex representation of unknown dynamic systems. Particular 2-variable PDEs, produced in network nodes, are converted using the Laplace transformed derivatives. The inverse L-transformation is applied to the resulting pure rational terms to obtain the originals of unknown node functions, whose sum is the composite PDE model. Statistical models are developed with data samples from estimated periods of the last days which optimally represent spatial patterns in the current weather. They process the latest available data to predict wind power in the next 1-12 h according to the trained data inputs RIGHTWARDS ARROW output time-shift.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 1182
ISBN
978-3-030-49344-8
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
254-265
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Haidarábád
Datum konání akce
13. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—