Wind-power intra-day multi-step predictions using polynomial networks solutions of general PDEs based on Operational Calculus.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10244102" target="_blank" >RIV/61989100:27240/19:10244102 - isvavai.cz</a>
Výsledek na webu
<a href="https://inis.iaea.org/search/search.aspx?orig_q=RN:52034314" target="_blank" >https://inis.iaea.org/search/search.aspx?orig_q=RN:52034314</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wind-power intra-day multi-step predictions using polynomial networks solutions of general PDEs based on Operational Calculus.
Popis výsledku v původním jazyce
Precise intra-day predictions of wind-power are challenging due to its intermittent nature and high correlation with large-scale atmospheric chaotic circulation processes. NWP systems solve sets of differential equations to predict a time-change of each 3D-grid cell in several atmospheric layers. Their surface forecasts of wind speed are not entirely adapted to specific local characteristics and anomalies, which largely influence its temporal-flow. AI methods us-ing historical observations can convert and refine the daily forecasts in consideration of wind farm siting, terrain asperity and ground level (hub height). Their independent wind-power predictions in horizon of several hours are also more precise then NWP model forecasts as these are usually produced every 6 hours. The designed method uses Polynomial neural networks to decompose and sub-stitute for the general linear Partial Differential Equation being able to describe n-variable functions of unknown complex dynamic systems. It solves specific 2-variable 2nd order PDEs, formed in PNN nodes, using a polynomial conver-sion based on Operational Calculus. The inverse Laplace transformation is ap-plied to the resulting rational terms to obtain the originals of node functions whose sum gives the complete PDE model. The composite PDE models are developed with data samples from the estimated optimal numbers of training days to represent spatial data relations in current weather, necessary for applicable predictions. They can predict wind power up to 12 hours ahead according to a trained data inputs->output time-shift. Intra-day multi-step predictions using the PDE models are more precise than those based on NWP model forecasts or statistical techniques allowing using local time-series of several variables only.
Název v anglickém jazyce
Wind-power intra-day multi-step predictions using polynomial networks solutions of general PDEs based on Operational Calculus.
Popis výsledku anglicky
Precise intra-day predictions of wind-power are challenging due to its intermittent nature and high correlation with large-scale atmospheric chaotic circulation processes. NWP systems solve sets of differential equations to predict a time-change of each 3D-grid cell in several atmospheric layers. Their surface forecasts of wind speed are not entirely adapted to specific local characteristics and anomalies, which largely influence its temporal-flow. AI methods us-ing historical observations can convert and refine the daily forecasts in consideration of wind farm siting, terrain asperity and ground level (hub height). Their independent wind-power predictions in horizon of several hours are also more precise then NWP model forecasts as these are usually produced every 6 hours. The designed method uses Polynomial neural networks to decompose and sub-stitute for the general linear Partial Differential Equation being able to describe n-variable functions of unknown complex dynamic systems. It solves specific 2-variable 2nd order PDEs, formed in PNN nodes, using a polynomial conver-sion based on Operational Calculus. The inverse Laplace transformation is ap-plied to the resulting rational terms to obtain the originals of node functions whose sum gives the complete PDE model. The composite PDE models are developed with data samples from the estimated optimal numbers of training days to represent spatial data relations in current weather, necessary for applicable predictions. They can predict wind power up to 12 hours ahead according to a trained data inputs->output time-shift. Intra-day multi-step predictions using the PDE models are more precise than those based on NWP model forecasts or statistical techniques allowing using local time-series of several variables only.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITISE 2019 : International Conference on Time Series and Forecasting : proceedings of papers : 25-27 September 2019, Granada, Spain
ISBN
978-84-17970-78-9
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
University of Granada
Místo vydání
Granada
Místo konání akce
Granada
Datum konání akce
25. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—