Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10247884" target="_blank" >RIV/61989100:27240/22:10247884 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-87178-9_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-87178-9_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-87178-9_6" target="_blank" >10.1007/978-3-030-87178-9_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution

  • Popis výsledku v původním jazyce

    Computational methods based on Artificial Intelligence (AI) can convert or post-process data produced by Numerical Weather Prediction (NWP) systems to predict Photo-Voltaic (PV) power in consideration of a plant specific situation. Their statistical models, developed with historical data series, are more precise if they rely on the latest weather observations and PV measurements. NWP models are usually run every 6 h with the prognoses delayed a few hours. Moreover, their accuracy is mostly inadequate for PV plant actual operation. Differential Polynomial Neural Network (D-PNN) is a novel biologically inspired neuro-computing technique which can model complex patterns without reducing significantly the data dimensionality as standard regression or soft-computing does. D-PNN combines appropriate 2-inputs to decompose the n-variable Partial Differential Equation (PDE), being able to describe the atmospheric dynamics, into a set of particular sub-PDEs in its nodes. The selected 2-variable composed PDEs are converted using adapted procedures of Operational Calculus (OC) to obtain the Laplace images of unknown node functions, which are inverse L-transformed to obtain the originals. D-PNN produces applicable sum PDE components in its nodes to extend step by step its composite models towards the optima. The compared AI models are developed with spatial historical data from the estimated optimal daily training periods to process the last day input data series and predict Clear Sky Index (CSI) at the corresponding 24-h horizon.

  • Název v anglickém jazyce

    Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution

  • Popis výsledku anglicky

    Computational methods based on Artificial Intelligence (AI) can convert or post-process data produced by Numerical Weather Prediction (NWP) systems to predict Photo-Voltaic (PV) power in consideration of a plant specific situation. Their statistical models, developed with historical data series, are more precise if they rely on the latest weather observations and PV measurements. NWP models are usually run every 6 h with the prognoses delayed a few hours. Moreover, their accuracy is mostly inadequate for PV plant actual operation. Differential Polynomial Neural Network (D-PNN) is a novel biologically inspired neuro-computing technique which can model complex patterns without reducing significantly the data dimensionality as standard regression or soft-computing does. D-PNN combines appropriate 2-inputs to decompose the n-variable Partial Differential Equation (PDE), being able to describe the atmospheric dynamics, into a set of particular sub-PDEs in its nodes. The selected 2-variable composed PDEs are converted using adapted procedures of Operational Calculus (OC) to obtain the Laplace images of unknown node functions, which are inverse L-transformed to obtain the originals. D-PNN produces applicable sum PDE components in its nodes to extend step by step its composite models towards the optima. The compared AI models are developed with spatial historical data from the estimated optimal daily training periods to process the last day input data series and predict Clear Sky Index (CSI) at the corresponding 24-h horizon.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems. Volume 330

  • ISBN

    978-3-030-87177-2

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Počet stran výsledku

    10

  • Strana od-do

    55-65

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Soči

  • Datum konání akce

    30. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku