Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10247884" target="_blank" >RIV/61989100:27240/22:10247884 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-87178-9_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-87178-9_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-87178-9_6" target="_blank" >10.1007/978-3-030-87178-9_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution
Popis výsledku v původním jazyce
Computational methods based on Artificial Intelligence (AI) can convert or post-process data produced by Numerical Weather Prediction (NWP) systems to predict Photo-Voltaic (PV) power in consideration of a plant specific situation. Their statistical models, developed with historical data series, are more precise if they rely on the latest weather observations and PV measurements. NWP models are usually run every 6 h with the prognoses delayed a few hours. Moreover, their accuracy is mostly inadequate for PV plant actual operation. Differential Polynomial Neural Network (D-PNN) is a novel biologically inspired neuro-computing technique which can model complex patterns without reducing significantly the data dimensionality as standard regression or soft-computing does. D-PNN combines appropriate 2-inputs to decompose the n-variable Partial Differential Equation (PDE), being able to describe the atmospheric dynamics, into a set of particular sub-PDEs in its nodes. The selected 2-variable composed PDEs are converted using adapted procedures of Operational Calculus (OC) to obtain the Laplace images of unknown node functions, which are inverse L-transformed to obtain the originals. D-PNN produces applicable sum PDE components in its nodes to extend step by step its composite models towards the optima. The compared AI models are developed with spatial historical data from the estimated optimal daily training periods to process the last day input data series and predict Clear Sky Index (CSI) at the corresponding 24-h horizon.
Název v anglickém jazyce
Photo-Voltaic Power Daily Statistical Predictions Using PDE Models of Stepwise Evolved Polynomial Networks with the Sum PDE Partition and L-transform Substitution
Popis výsledku anglicky
Computational methods based on Artificial Intelligence (AI) can convert or post-process data produced by Numerical Weather Prediction (NWP) systems to predict Photo-Voltaic (PV) power in consideration of a plant specific situation. Their statistical models, developed with historical data series, are more precise if they rely on the latest weather observations and PV measurements. NWP models are usually run every 6 h with the prognoses delayed a few hours. Moreover, their accuracy is mostly inadequate for PV plant actual operation. Differential Polynomial Neural Network (D-PNN) is a novel biologically inspired neuro-computing technique which can model complex patterns without reducing significantly the data dimensionality as standard regression or soft-computing does. D-PNN combines appropriate 2-inputs to decompose the n-variable Partial Differential Equation (PDE), being able to describe the atmospheric dynamics, into a set of particular sub-PDEs in its nodes. The selected 2-variable composed PDEs are converted using adapted procedures of Operational Calculus (OC) to obtain the Laplace images of unknown node functions, which are inverse L-transformed to obtain the originals. D-PNN produces applicable sum PDE components in its nodes to extend step by step its composite models towards the optima. The compared AI models are developed with spatial historical data from the estimated optimal daily training periods to process the last day input data series and predict Clear Sky Index (CSI) at the corresponding 24-h horizon.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems. Volume 330
ISBN
978-3-030-87177-2
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
10
Strana od-do
55-65
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Soči
Datum konání akce
30. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—