Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Photo-voltaic power intra-day and daily statistical predictions using sum models composed from L-transformed PDE components in nodes of step by step developed polynomial neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10246618" target="_blank" >RIV/61989100:27240/21:10246618 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/21:10246618

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00202-020-01153-w" target="_blank" >https://link.springer.com/article/10.1007/s00202-020-01153-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00202-020-01153-w" target="_blank" >10.1007/s00202-020-01153-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Photo-voltaic power intra-day and daily statistical predictions using sum models composed from L-transformed PDE components in nodes of step by step developed polynomial neural networks

  • Popis výsledku v původním jazyce

    Precise forecasts of photo-voltaic (PV) energy production are necessary for its planning, utilization and integration into the electrical grid. Intra-day or daily statistical models, using only the latest weather observations and power data measurements, can predict PV power for a plant-specific location and condition on time. Numerical weather prediction (NWP) systems are run every 6 h to produce free prognoses of local cloudiness with a considerable delay and usually not in operational quality. Differential polynomial neural network (D-PNN) is a novel neuro-computing technique able to model complex weather patterns. D-PNN decomposes the n-variable partial differential equation (PDE), allowing complex representation of the near-ground atmospheric dynamics, into a set of 2-input node sub-PDEs. These are converted and substituted using the Laplace transformation according to operational calculus. D-PNN produces applicable PDE components which extend, one by one, its composite models using the selected optimal inputs. The models are developed with historical spatial data from estimated daily training periods for a specific inputs- &gt; output time-shift to predict clear-sky index. Multi-step 1-9 h and one-step 24-h PV power predictions using machine learning and regression are compared to assess the performance of their models for both of the approaches. The presented spatial models obtain a better prediction accuracy than those post-processing NWP data, using a few variables only. The daily statistical models allow prediction of full PVP cycles in one step with an adequate accuracy in the morning and afternoon hours. This is inevitable in management of PV plant energy production and consumption. (C) 2021, Springer-Verlag GmbH Germany, part of Springer Nature.

  • Název v anglickém jazyce

    Photo-voltaic power intra-day and daily statistical predictions using sum models composed from L-transformed PDE components in nodes of step by step developed polynomial neural networks

  • Popis výsledku anglicky

    Precise forecasts of photo-voltaic (PV) energy production are necessary for its planning, utilization and integration into the electrical grid. Intra-day or daily statistical models, using only the latest weather observations and power data measurements, can predict PV power for a plant-specific location and condition on time. Numerical weather prediction (NWP) systems are run every 6 h to produce free prognoses of local cloudiness with a considerable delay and usually not in operational quality. Differential polynomial neural network (D-PNN) is a novel neuro-computing technique able to model complex weather patterns. D-PNN decomposes the n-variable partial differential equation (PDE), allowing complex representation of the near-ground atmospheric dynamics, into a set of 2-input node sub-PDEs. These are converted and substituted using the Laplace transformation according to operational calculus. D-PNN produces applicable PDE components which extend, one by one, its composite models using the selected optimal inputs. The models are developed with historical spatial data from estimated daily training periods for a specific inputs- &gt; output time-shift to predict clear-sky index. Multi-step 1-9 h and one-step 24-h PV power predictions using machine learning and regression are compared to assess the performance of their models for both of the approaches. The presented spatial models obtain a better prediction accuracy than those post-processing NWP data, using a few variables only. The daily statistical models allow prediction of full PVP cycles in one step with an adequate accuracy in the morning and afternoon hours. This is inevitable in management of PV plant energy production and consumption. (C) 2021, Springer-Verlag GmbH Germany, part of Springer Nature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electrical Engineering

  • ISSN

    0948-7921

  • e-ISSN

  • Svazek periodika

    103

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    "1183–1197"

  • Kód UT WoS článku

    000600829300001

  • EID výsledku v databázi Scopus

    2-s2.0-85097890029