Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Photo-voltaic power daily predictions using expanding PDE sum models of polynomial networks based on Operational Calculus

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243708" target="_blank" >RIV/61989100:27240/20:10243708 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0952197619303203" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0952197619303203</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2019.103409" target="_blank" >10.1016/j.engappai.2019.103409</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Photo-voltaic power daily predictions using expanding PDE sum models of polynomial networks based on Operational Calculus

  • Popis výsledku v původním jazyce

    Photo-Voltaic (PV) power production is subject to the current local weather situation which result in the amount of solar radiation components possible to convert by PV modules. Numerical Weather Prediction (NWP) systems are usually run every 6 h to provide course local 24-48-hour forecasts. Statistical models, developed with spatial historical data, can convert or post-process these NWP data to predict PV power for a plant specific situation. Statistical predictions are more precise if rely on the latest weather observations and power measurements as the accuracy of NWP cloudiness is mostly inadequate for PV plant operation and the forecast errors are only magnified. Differential Polynomial Neural Network (D-PNN) is a novel neuro-computing technique based on analogies with brain pulse signal processing. It can model complex patterns without reducing significantly the data dimensionality as regression and soft-computing methods do. D-PNN decomposes the general Partial Differential Equation (PDE), being able to describe the local atmospheric dynamics, into node specific 2nd order sub-PDEs. These are converted using adapted procedures of Operational Calculus to obtain the Laplace images of unknown node functions, which are inverse transformed to obtain the originals. D-PNN can select from dozens of input variables to produce applicable sum PDE components which can extend, step by step, its composite models towards the optima. The PDE models are developed with historical spatial data from the estimated optimal lengths of daily training periods to process the last day input data and predict Clear Sky Index 24-hours ahead. They obtain a better prediction accuracy than simplified statistical solutions which allow to predict in horizon of a few hours only. (C) 2019 Elsevier Ltd

  • Název v anglickém jazyce

    Photo-voltaic power daily predictions using expanding PDE sum models of polynomial networks based on Operational Calculus

  • Popis výsledku anglicky

    Photo-Voltaic (PV) power production is subject to the current local weather situation which result in the amount of solar radiation components possible to convert by PV modules. Numerical Weather Prediction (NWP) systems are usually run every 6 h to provide course local 24-48-hour forecasts. Statistical models, developed with spatial historical data, can convert or post-process these NWP data to predict PV power for a plant specific situation. Statistical predictions are more precise if rely on the latest weather observations and power measurements as the accuracy of NWP cloudiness is mostly inadequate for PV plant operation and the forecast errors are only magnified. Differential Polynomial Neural Network (D-PNN) is a novel neuro-computing technique based on analogies with brain pulse signal processing. It can model complex patterns without reducing significantly the data dimensionality as regression and soft-computing methods do. D-PNN decomposes the general Partial Differential Equation (PDE), being able to describe the local atmospheric dynamics, into node specific 2nd order sub-PDEs. These are converted using adapted procedures of Operational Calculus to obtain the Laplace images of unknown node functions, which are inverse transformed to obtain the originals. D-PNN can select from dozens of input variables to produce applicable sum PDE components which can extend, step by step, its composite models towards the optima. The PDE models are developed with historical spatial data from the estimated optimal lengths of daily training periods to process the last day input data and predict Clear Sky Index 24-hours ahead. They obtain a better prediction accuracy than simplified statistical solutions which allow to predict in horizon of a few hours only. (C) 2019 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

  • ISSN

    0952-1976

  • e-ISSN

  • Svazek periodika

    89

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000515429100024

  • EID výsledku v databázi Scopus

    2-s2.0-85077458065