Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10245743" target="_blank" >RIV/61989100:27240/21:10245743 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68145535:_____/21:00534467

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0377042720304088" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042720304088</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2020.113117" target="_blank" >10.1016/j.cam.2020.113117</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form

  • Popis výsledku v původním jazyce

    Large scale systems of algebraic equations are frequently solved by iterative solution methods, such as the conjugate gradient method for symmetric or a generalized conjugate gradient or generalized minimum residual method for nonsymmetric linear systems. In practice, to get an acceptable elapsed computing time when solving large scale problems, one shall use parallel computer platforms. However, such methods involve orthogonalization of search vectors which requires computation of many inner products and, hence, needs global communication of data, which will be costly in computer times. In this paper, we propose various inner product free methods, such as the Chebyshev acceleration method. We study the solution of linear systems arising from optimal control problems for PDEs, such as the edge element discretization of the time-periodic eddy current optimal control problem. Following a discretize-then-optimize scheme, the resulting linear system is of a three-by-three block matrix form. Various solution methods based on an approximate Schur complement and inner product free iterative solution methods for this linear system are analyzed and compared with an earlier used method for two-by-two block matrices with square blocks. The convergence properties and implementation details of the proposed methods are analyzed to show their effectiveness and practicality. Both serial and parallel numerical experiments are presented to further investigate the performance of the proposed methods compared with some other existing methods. (C) 2020 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form

  • Popis výsledku anglicky

    Large scale systems of algebraic equations are frequently solved by iterative solution methods, such as the conjugate gradient method for symmetric or a generalized conjugate gradient or generalized minimum residual method for nonsymmetric linear systems. In practice, to get an acceptable elapsed computing time when solving large scale problems, one shall use parallel computer platforms. However, such methods involve orthogonalization of search vectors which requires computation of many inner products and, hence, needs global communication of data, which will be costly in computer times. In this paper, we propose various inner product free methods, such as the Chebyshev acceleration method. We study the solution of linear systems arising from optimal control problems for PDEs, such as the edge element discretization of the time-periodic eddy current optimal control problem. Following a discretize-then-optimize scheme, the resulting linear system is of a three-by-three block matrix form. Various solution methods based on an approximate Schur complement and inner product free iterative solution methods for this linear system are analyzed and compared with an earlier used method for two-by-two block matrices with square blocks. The convergence properties and implementation details of the proposed methods are analyzed to show their effectiveness and practicality. Both serial and parallel numerical experiments are presented to further investigate the performance of the proposed methods compared with some other existing methods. (C) 2020 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of computational and applied mathematics

  • ISSN

    0377-0427

  • e-ISSN

  • Svazek periodika

    383

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    000574895400017

  • EID výsledku v databázi Scopus

    2-s2.0-85089350230