Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00534467" target="_blank" >RIV/68145535:_____/21:00534467 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/21:10245743
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042720304088" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042720304088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2020.113117" target="_blank" >10.1016/j.cam.2020.113117</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form
Popis výsledku v původním jazyce
Large scale systems of algebraic equations are frequently solved by iterative solution methods, such as the conjugate gradient method for symmetric or a generalized conjugate gradient or generalized minimum residual method for nonsymmetric linear systems. In practice, to get an acceptable elapsed computing time when solving large scale problems, one shall use parallel computer platforms. However, such methods involve orthogonalization of search vectors which requires computation of many inner products and, hence, needs global communication of data, which will be costly in computer times. In this paper, we propose various inner product free methods, such as the Chebyshev acceleration method. We study the solution of linear systems arising from optimal control problems for PDEs, such as the edge element discretization of the time-periodic eddy current optimal control problem. Following a discretize-then-optimize scheme, the resulting linear system is of a three-by-three block matrix form. Various solution methods based on an approximate Schur complement and inner product free iterative solution methods for this linear system are analyzed and compared with an earlier used method for two-by-two block matrices with square blocks. The convergence properties and implementation details of the proposed methods are analyzed to show their effectiveness and practicality. Both serial and parallel numerical experiments are presented to further investigate the performance of the proposed methods compared with some other existing methods.
Název v anglickém jazyce
Inner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix form
Popis výsledku anglicky
Large scale systems of algebraic equations are frequently solved by iterative solution methods, such as the conjugate gradient method for symmetric or a generalized conjugate gradient or generalized minimum residual method for nonsymmetric linear systems. In practice, to get an acceptable elapsed computing time when solving large scale problems, one shall use parallel computer platforms. However, such methods involve orthogonalization of search vectors which requires computation of many inner products and, hence, needs global communication of data, which will be costly in computer times. In this paper, we propose various inner product free methods, such as the Chebyshev acceleration method. We study the solution of linear systems arising from optimal control problems for PDEs, such as the edge element discretization of the time-periodic eddy current optimal control problem. Following a discretize-then-optimize scheme, the resulting linear system is of a three-by-three block matrix form. Various solution methods based on an approximate Schur complement and inner product free iterative solution methods for this linear system are analyzed and compared with an earlier used method for two-by-two block matrices with square blocks. The convergence properties and implementation details of the proposed methods are analyzed to show their effectiveness and practicality. Both serial and parallel numerical experiments are presented to further investigate the performance of the proposed methods compared with some other existing methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
383
Číslo periodika v rámci svazku
February 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
113117
Kód UT WoS článku
000574895400017
EID výsledku v databázi Scopus
2-s2.0-85089350230