Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247865" target="_blank" >RIV/61989100:27240/21:10247865 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10247865
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9440916" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9440916</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3083928" target="_blank" >10.1109/ACCESS.2021.3083928</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes
Popis výsledku v původním jazyce
Smart control systems are mostly applied in industry to control the movements of heavy machinery while optimizing overall operational efficiency. Major shipping companies use large quay cranes to load and unload containers from ships and still rely on the experience of on-site operators to perform transportation control procedures using joysticks and visual contact methods. This paper presents the research results of an EU-funded project for the Klaipeda container terminal to develop a novel container transportation security and cargo safety assurance method and system. It was concluded that many risks arise during the container handling procedures performed by the quay cranes and operators. To minimize these risks, the authors proposed controlling the sway of the spreader using a model predictive control method which applies a multi-layer perceptron (MLP) neural network (NN). The paper analyzes current neural network architectures and case studies and provides the engineering community with a unique case study which applies real operation statistical data. Several key training algorithms were tested, and the initial results suggest that the Levenberg-Marquardt (LM) algorithm and variable learning rate backpropagation perform better than methods which use the multi-layer perceptron neural network structure. CCBYNCND
Název v anglickém jazyce
Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes
Popis výsledku anglicky
Smart control systems are mostly applied in industry to control the movements of heavy machinery while optimizing overall operational efficiency. Major shipping companies use large quay cranes to load and unload containers from ships and still rely on the experience of on-site operators to perform transportation control procedures using joysticks and visual contact methods. This paper presents the research results of an EU-funded project for the Klaipeda container terminal to develop a novel container transportation security and cargo safety assurance method and system. It was concluded that many risks arise during the container handling procedures performed by the quay cranes and operators. To minimize these risks, the authors proposed controlling the sway of the spreader using a model predictive control method which applies a multi-layer perceptron (MLP) neural network (NN). The paper analyzes current neural network architectures and case studies and provides the engineering community with a unique case study which applies real operation statistical data. Several key training algorithms were tested, and the initial results suggest that the Levenberg-Marquardt (LM) algorithm and variable learning rate backpropagation perform better than methods which use the multi-layer perceptron neural network structure. CCBYNCND
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
78253-78265
Kód UT WoS článku
000739475100001
EID výsledku v databázi Scopus
2-s2.0-85107197007