Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247865" target="_blank" >RIV/61989100:27240/21:10247865 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/21:10247865

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9440916" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9440916</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3083928" target="_blank" >10.1109/ACCESS.2021.3083928</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes

  • Popis výsledku v původním jazyce

    Smart control systems are mostly applied in industry to control the movements of heavy machinery while optimizing overall operational efficiency. Major shipping companies use large quay cranes to load and unload containers from ships and still rely on the experience of on-site operators to perform transportation control procedures using joysticks and visual contact methods. This paper presents the research results of an EU-funded project for the Klaipeda container terminal to develop a novel container transportation security and cargo safety assurance method and system. It was concluded that many risks arise during the container handling procedures performed by the quay cranes and operators. To minimize these risks, the authors proposed controlling the sway of the spreader using a model predictive control method which applies a multi-layer perceptron (MLP) neural network (NN). The paper analyzes current neural network architectures and case studies and provides the engineering community with a unique case study which applies real operation statistical data. Several key training algorithms were tested, and the initial results suggest that the Levenberg-Marquardt (LM) algorithm and variable learning rate backpropagation perform better than methods which use the multi-layer perceptron neural network structure. CCBYNCND

  • Název v anglickém jazyce

    Application of Neural Network Predictive Control Methods to Solve the Shipping Container Sway Control Problem in Quay Cranes

  • Popis výsledku anglicky

    Smart control systems are mostly applied in industry to control the movements of heavy machinery while optimizing overall operational efficiency. Major shipping companies use large quay cranes to load and unload containers from ships and still rely on the experience of on-site operators to perform transportation control procedures using joysticks and visual contact methods. This paper presents the research results of an EU-funded project for the Klaipeda container terminal to develop a novel container transportation security and cargo safety assurance method and system. It was concluded that many risks arise during the container handling procedures performed by the quay cranes and operators. To minimize these risks, the authors proposed controlling the sway of the spreader using a model predictive control method which applies a multi-layer perceptron (MLP) neural network (NN). The paper analyzes current neural network architectures and case studies and provides the engineering community with a unique case study which applies real operation statistical data. Several key training algorithms were tested, and the initial results suggest that the Levenberg-Marquardt (LM) algorithm and variable learning rate backpropagation perform better than methods which use the multi-layer perceptron neural network structure. CCBYNCND

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    78253-78265

  • Kód UT WoS článku

    000739475100001

  • EID výsledku v databázi Scopus

    2-s2.0-85107197007