Multiple-objective optimization applied in extracting multiple-choice tests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248859" target="_blank" >RIV/61989100:27240/21:10248859 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197621002876?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197621002876?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2021.104439" target="_blank" >10.1016/j.engappai.2021.104439</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple-objective optimization applied in extracting multiple-choice tests
Popis výsledku v původním jazyce
Student evaluation is an essential part of education and is usually done through examinations. These examinations generally use tests consisting of several questions as crucial factors to determine the quality of the students. Test-making can be thought of as a multi-constraint optimization problem. However, the test-making process that is done by either manually or randomly picking questions from question banks still consumes much time and effort. Besides, the quality of the tests generated is usually not good enough. The tests may not entirely satisfy the given multiple constraints such as required test durations, number of questions, and question difficulties. In this paper, we propose parallel strategies, in which parallel migration is based on Pareto optimums, and applyan improved genetic algorithm called a genetic algorithm combined with simulated annealing, GASA, which improves diversity and accuracy of the individuals by encoding schemes and a new mutation operator of GA to handle the multiple objectives while generating multiple choice-tests from a large question bank. The proposed algorithms can use the ability to exploit historical information structure in the discovered tests, and use this to construct desired tests later. Experimental results show that the proposed approaches are efficient and effective in generating valuable tests that satisfy specified requirements. In addition, the results, when compared with those from traditional genetic algorithms, are improved in several criteria including execution time, search speed, accuracy, solution diversity, and algorithm stability.
Název v anglickém jazyce
Multiple-objective optimization applied in extracting multiple-choice tests
Popis výsledku anglicky
Student evaluation is an essential part of education and is usually done through examinations. These examinations generally use tests consisting of several questions as crucial factors to determine the quality of the students. Test-making can be thought of as a multi-constraint optimization problem. However, the test-making process that is done by either manually or randomly picking questions from question banks still consumes much time and effort. Besides, the quality of the tests generated is usually not good enough. The tests may not entirely satisfy the given multiple constraints such as required test durations, number of questions, and question difficulties. In this paper, we propose parallel strategies, in which parallel migration is based on Pareto optimums, and applyan improved genetic algorithm called a genetic algorithm combined with simulated annealing, GASA, which improves diversity and accuracy of the individuals by encoding schemes and a new mutation operator of GA to handle the multiple objectives while generating multiple choice-tests from a large question bank. The proposed algorithms can use the ability to exploit historical information structure in the discovered tests, and use this to construct desired tests later. Experimental results show that the proposed approaches are efficient and effective in generating valuable tests that satisfy specified requirements. In addition, the results, when compared with those from traditional genetic algorithms, are improved in several criteria including execution time, search speed, accuracy, solution diversity, and algorithm stability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
—
Svazek periodika
105
Číslo periodika v rámci svazku
říjen 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000704650900013
EID výsledku v databázi Scopus
—