Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiple-objective optimization applied in extracting multiple-choice tests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248859" target="_blank" >RIV/61989100:27240/21:10248859 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0952197621002876?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197621002876?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2021.104439" target="_blank" >10.1016/j.engappai.2021.104439</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiple-objective optimization applied in extracting multiple-choice tests

  • Popis výsledku v původním jazyce

    Student evaluation is an essential part of education and is usually done through examinations. These examinations generally use tests consisting of several questions as crucial factors to determine the quality of the students. Test-making can be thought of as a multi-constraint optimization problem. However, the test-making process that is done by either manually or randomly picking questions from question banks still consumes much time and effort. Besides, the quality of the tests generated is usually not good enough. The tests may not entirely satisfy the given multiple constraints such as required test durations, number of questions, and question difficulties. In this paper, we propose parallel strategies, in which parallel migration is based on Pareto optimums, and applyan improved genetic algorithm called a genetic algorithm combined with simulated annealing, GASA, which improves diversity and accuracy of the individuals by encoding schemes and a new mutation operator of GA to handle the multiple objectives while generating multiple choice-tests from a large question bank. The proposed algorithms can use the ability to exploit historical information structure in the discovered tests, and use this to construct desired tests later. Experimental results show that the proposed approaches are efficient and effective in generating valuable tests that satisfy specified requirements. In addition, the results, when compared with those from traditional genetic algorithms, are improved in several criteria including execution time, search speed, accuracy, solution diversity, and algorithm stability.

  • Název v anglickém jazyce

    Multiple-objective optimization applied in extracting multiple-choice tests

  • Popis výsledku anglicky

    Student evaluation is an essential part of education and is usually done through examinations. These examinations generally use tests consisting of several questions as crucial factors to determine the quality of the students. Test-making can be thought of as a multi-constraint optimization problem. However, the test-making process that is done by either manually or randomly picking questions from question banks still consumes much time and effort. Besides, the quality of the tests generated is usually not good enough. The tests may not entirely satisfy the given multiple constraints such as required test durations, number of questions, and question difficulties. In this paper, we propose parallel strategies, in which parallel migration is based on Pareto optimums, and applyan improved genetic algorithm called a genetic algorithm combined with simulated annealing, GASA, which improves diversity and accuracy of the individuals by encoding schemes and a new mutation operator of GA to handle the multiple objectives while generating multiple choice-tests from a large question bank. The proposed algorithms can use the ability to exploit historical information structure in the discovered tests, and use this to construct desired tests later. Experimental results show that the proposed approaches are efficient and effective in generating valuable tests that satisfy specified requirements. In addition, the results, when compared with those from traditional genetic algorithms, are improved in several criteria including execution time, search speed, accuracy, solution diversity, and algorithm stability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

  • Svazek periodika

    105

  • Číslo periodika v rámci svazku

    říjen 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000704650900013

  • EID výsledku v databázi Scopus