Self-Organizing Migrating Algorithm with narrowing search space strategy for robot path planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249921" target="_blank" >RIV/61989100:27240/22:10249921 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494621" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2021.108270" target="_blank" >10.1016/j.asoc.2021.108270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Organizing Migrating Algorithm with narrowing search space strategy for robot path planning
Popis výsledku v původním jazyce
This article introduces a version of the Self-Organizing Migrating Algorithm with a narrowing search space strategy named iSOMA. Compared to the previous two versions, SOMA T3A and Pareto that ranked 3rd and 5th respectively in the IEEE CEC (Congress on Evolutionary Computation) 2019 competition, the iSOMA is equipped with more advanced features with notable improvements including applying jumps in the order, immediate update, narrowing the search space instead of searching on the intersecting edges of hyperplanes, and the partial replacement of individuals in the population when the global best improved no further. Moreover, the proposed algorithm is organized into processes named initialization, self-organizing, migrating, and replacement. We tested the performance of this new version by using three benchmark test suites of IEEE CEC 2013, 2015, and 2017, which, together contain a total of 73 functions. Not only is it superior in performance to other SOMAs, but iSOMA also yields promising results against the representatives of well-known algorithmic families such as Differential Evolution and Particle Swarm Optimization. Moreover, we demonstrate the application of iSOMA for path planning of a drone, while avoiding static obstacles and catching the target. (C) 2021 The Author(s). Published by Elsevier B.V.
Název v anglickém jazyce
Self-Organizing Migrating Algorithm with narrowing search space strategy for robot path planning
Popis výsledku anglicky
This article introduces a version of the Self-Organizing Migrating Algorithm with a narrowing search space strategy named iSOMA. Compared to the previous two versions, SOMA T3A and Pareto that ranked 3rd and 5th respectively in the IEEE CEC (Congress on Evolutionary Computation) 2019 competition, the iSOMA is equipped with more advanced features with notable improvements including applying jumps in the order, immediate update, narrowing the search space instead of searching on the intersecting edges of hyperplanes, and the partial replacement of individuals in the population when the global best improved no further. Moreover, the proposed algorithm is organized into processes named initialization, self-organizing, migrating, and replacement. We tested the performance of this new version by using three benchmark test suites of IEEE CEC 2013, 2015, and 2017, which, together contain a total of 73 functions. Not only is it superior in performance to other SOMAs, but iSOMA also yields promising results against the representatives of well-known algorithmic families such as Differential Evolution and Particle Swarm Optimization. Moreover, we demonstrate the application of iSOMA for path planning of a drone, while avoiding static obstacles and catching the target. (C) 2021 The Author(s). Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
116
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
nestrankovano
Kód UT WoS článku
000768205400002
EID výsledku v databázi Scopus
—