Environmental Monitoring Stations Data Transmission Using Reinforcement Learning Wavelet Compression Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250220" target="_blank" >RIV/61989100:27240/22:10250220 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896322003366" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896322003366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2022.06.021" target="_blank" >10.1016/j.ifacol.2022.06.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Environmental Monitoring Stations Data Transmission Using Reinforcement Learning Wavelet Compression Method
Popis výsledku v původním jazyce
The connection between environmental monitoring and the Internet of Things (IoT) raises new possibilities for data transmission from environmental wireless sensors networks (EWSN) and transferring parameters of interest to a cloud. EWSN uses a low-power wide-area networks (LPWAN) which allow only very limited data throughput and are subject to regional restriction. The paper investigates a self-learning wavelet compression algorithm driven by a strategy based on Q-learning (QL). This approach allows optimiation of the total amount of transmitted data by applying lossy wavelet transform compression. The aim of this research is to achieve optimal use of the available communication channel width and minimize loss of information using compression. The paper presents a simulation-based study with design methodology for a QL controller. The results showed that the loss of information due to lossy compression causes a relative error in range of 0.3-1.7 % for most of the environmental parameters. The results also revealed that lossy compression causes small errors in parameters which experience slow and infrequent changes. Copyright (C) 2022 The Authors.
Název v anglickém jazyce
Environmental Monitoring Stations Data Transmission Using Reinforcement Learning Wavelet Compression Method
Popis výsledku anglicky
The connection between environmental monitoring and the Internet of Things (IoT) raises new possibilities for data transmission from environmental wireless sensors networks (EWSN) and transferring parameters of interest to a cloud. EWSN uses a low-power wide-area networks (LPWAN) which allow only very limited data throughput and are subject to regional restriction. The paper investigates a self-learning wavelet compression algorithm driven by a strategy based on Q-learning (QL). This approach allows optimiation of the total amount of transmitted data by applying lossy wavelet transform compression. The aim of this research is to achieve optimal use of the available communication channel width and minimize loss of information using compression. The paper presents a simulation-based study with design methodology for a QL controller. The results showed that the loss of information due to lossy compression causes a relative error in range of 0.3-1.7 % for most of the environmental parameters. The results also revealed that lossy compression causes small errors in parameters which experience slow and infrequent changes. Copyright (C) 2022 The Authors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFAC PapersOnLine. Volume 55
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
127-132
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Sarajevo
Datum konání akce
17. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000836230600021