Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiple Benefit Thresholds Problem in Online Social Networks: An Algorithmic Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251956" target="_blank" >RIV/61989100:27240/22:10251956 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/10/6/876" target="_blank" >https://www.mdpi.com/2227-7390/10/6/876</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10060876" target="_blank" >10.3390/math10060876</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiple Benefit Thresholds Problem in Online Social Networks: An Algorithmic Approach

  • Popis výsledku v původním jazyce

    An important problem in the context of viral marketing in social networks is the Influence Threshold (IT) problem, which aims at finding some users (referred to as a seed set) to begin the process of disseminating their product&apos;s information so that the benefit gained exceeds a predetermined threshold. Even though, marketing strategies exhibit different in several realistic scenarios due to market dependence or budget constraints. As a consequence, picking a seed set for a specific threshold is not enough to come up with an effective solution. To address the disadvantages of previous works with a new approach, we study the Multiple Benefit Thresholds (MBT), a generalized version of the IT problem, as a result of this phenomenon. Given a social network that is subjected to information distribution and a set of thresholds, T = {T-1, T-2, ..., T-k}, Ti &gt; 0, the issue aims to seek the seed sets S-1, S-2, ..., Sk with the lowest possible cost so that the benefit achieved from the influence process is at the very least T-1, T-2, ..., T-k, respectively. The main challenges of this problem are a #NP-hard problem and the estimation of the objective function #P-Hard under traditional information propagation models. In addition, adapting the exist algorithms many times to different thresholds can lead to large computational costs. To address the abovementioned challenges, we introduced Efficient Sampling for Selecting Multiple Seed Sets, an efficient technique with theoretical guarantees (ESSM). At the core of our algorithm, we developed a novel algorithmic framework that (1) can use the solution to a smaller threshold to find that of larger ones and (2) can leverage existing samples with the current solution to find that of larger ones. The extensive experiments on several real social networks were conducted in order to show the effectiveness and performance of our algorithm compared with current ones. The results indicated that our algorithm outperformed other state-of-the-art ones in terms of both the total cost and running time.

  • Název v anglickém jazyce

    Multiple Benefit Thresholds Problem in Online Social Networks: An Algorithmic Approach

  • Popis výsledku anglicky

    An important problem in the context of viral marketing in social networks is the Influence Threshold (IT) problem, which aims at finding some users (referred to as a seed set) to begin the process of disseminating their product&apos;s information so that the benefit gained exceeds a predetermined threshold. Even though, marketing strategies exhibit different in several realistic scenarios due to market dependence or budget constraints. As a consequence, picking a seed set for a specific threshold is not enough to come up with an effective solution. To address the disadvantages of previous works with a new approach, we study the Multiple Benefit Thresholds (MBT), a generalized version of the IT problem, as a result of this phenomenon. Given a social network that is subjected to information distribution and a set of thresholds, T = {T-1, T-2, ..., T-k}, Ti &gt; 0, the issue aims to seek the seed sets S-1, S-2, ..., Sk with the lowest possible cost so that the benefit achieved from the influence process is at the very least T-1, T-2, ..., T-k, respectively. The main challenges of this problem are a #NP-hard problem and the estimation of the objective function #P-Hard under traditional information propagation models. In addition, adapting the exist algorithms many times to different thresholds can lead to large computational costs. To address the abovementioned challenges, we introduced Efficient Sampling for Selecting Multiple Seed Sets, an efficient technique with theoretical guarantees (ESSM). At the core of our algorithm, we developed a novel algorithmic framework that (1) can use the solution to a smaller threshold to find that of larger ones and (2) can leverage existing samples with the current solution to find that of larger ones. The extensive experiments on several real social networks were conducted in order to show the effectiveness and performance of our algorithm compared with current ones. The results indicated that our algorithm outperformed other state-of-the-art ones in terms of both the total cost and running time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000778250100001

  • EID výsledku v databázi Scopus