Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020412" target="_blank" >RIV/62690094:18450/23:50020412 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s13278-023-01064-1" target="_blank" >https://link.springer.com/article/10.1007/s13278-023-01064-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13278-023-01064-1" target="_blank" >10.1007/s13278-023-01064-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks

  • Popis výsledku v původním jazyce

    Online social network datasets contain a large amount of various information about their users. Preserving users&apos; privacy while publishing or sharing datasets with third parties has become a challenging problem. The k-automorphism is the anonymization method that protects the social network dataset against any passive structural attack. It provides a higher level of protection than other k-anonymity methods, including k-degree or k-neighborhood techniques. In this paper, we propose a hybrid algorithm that effectively modifies the social network to the k-automorphism one. The proposed algorithm is based on the structure of the previously published k-automorphism KM algorithm. However, it solves the NP-hard subtask of finding isomorphic graph extensions with a genetic algorithm and employs the GraMi algorithm for finding frequent subgraphs. In the design of the genetic algorithm, we introduce the novel chromosome representation in which the length of the chromosome is independent of the size of the input network, and each individual in each generation leads to the k-automorphism solution. Moreover, we present a heuristic method for selecting the set of vertex disjoint subgraphs. To test the algorithm, we run experiments on a set of real social networks and use the SecGraph tool to evaluate our results in terms of protection against deanonymization attacks and preserving data utility. It makes our experimental results comparable with any future research.

  • Název v anglickém jazyce

    HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks

  • Popis výsledku anglicky

    Online social network datasets contain a large amount of various information about their users. Preserving users&apos; privacy while publishing or sharing datasets with third parties has become a challenging problem. The k-automorphism is the anonymization method that protects the social network dataset against any passive structural attack. It provides a higher level of protection than other k-anonymity methods, including k-degree or k-neighborhood techniques. In this paper, we propose a hybrid algorithm that effectively modifies the social network to the k-automorphism one. The proposed algorithm is based on the structure of the previously published k-automorphism KM algorithm. However, it solves the NP-hard subtask of finding isomorphic graph extensions with a genetic algorithm and employs the GraMi algorithm for finding frequent subgraphs. In the design of the genetic algorithm, we introduce the novel chromosome representation in which the length of the chromosome is independent of the size of the input network, and each individual in each generation leads to the k-automorphism solution. Moreover, we present a heuristic method for selecting the set of vertex disjoint subgraphs. To test the algorithm, we run experiments on a set of real social networks and use the SecGraph tool to evaluate our results in terms of protection against deanonymization attacks and preserving data utility. It makes our experimental results comparable with any future research.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Social Network Analysis and Mining

  • ISSN

    1869-5450

  • e-ISSN

    1869-5469

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    21

  • Strana od-do

    "Article Number: 63"

  • Kód UT WoS článku

    000963155900001

  • EID výsledku v databázi Scopus

    2-s2.0-85152619775