HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020412" target="_blank" >RIV/62690094:18450/23:50020412 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13278-023-01064-1" target="_blank" >https://link.springer.com/article/10.1007/s13278-023-01064-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13278-023-01064-1" target="_blank" >10.1007/s13278-023-01064-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks
Popis výsledku v původním jazyce
Online social network datasets contain a large amount of various information about their users. Preserving users' privacy while publishing or sharing datasets with third parties has become a challenging problem. The k-automorphism is the anonymization method that protects the social network dataset against any passive structural attack. It provides a higher level of protection than other k-anonymity methods, including k-degree or k-neighborhood techniques. In this paper, we propose a hybrid algorithm that effectively modifies the social network to the k-automorphism one. The proposed algorithm is based on the structure of the previously published k-automorphism KM algorithm. However, it solves the NP-hard subtask of finding isomorphic graph extensions with a genetic algorithm and employs the GraMi algorithm for finding frequent subgraphs. In the design of the genetic algorithm, we introduce the novel chromosome representation in which the length of the chromosome is independent of the size of the input network, and each individual in each generation leads to the k-automorphism solution. Moreover, we present a heuristic method for selecting the set of vertex disjoint subgraphs. To test the algorithm, we run experiments on a set of real social networks and use the SecGraph tool to evaluate our results in terms of protection against deanonymization attacks and preserving data utility. It makes our experimental results comparable with any future research.
Název v anglickém jazyce
HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks
Popis výsledku anglicky
Online social network datasets contain a large amount of various information about their users. Preserving users' privacy while publishing or sharing datasets with third parties has become a challenging problem. The k-automorphism is the anonymization method that protects the social network dataset against any passive structural attack. It provides a higher level of protection than other k-anonymity methods, including k-degree or k-neighborhood techniques. In this paper, we propose a hybrid algorithm that effectively modifies the social network to the k-automorphism one. The proposed algorithm is based on the structure of the previously published k-automorphism KM algorithm. However, it solves the NP-hard subtask of finding isomorphic graph extensions with a genetic algorithm and employs the GraMi algorithm for finding frequent subgraphs. In the design of the genetic algorithm, we introduce the novel chromosome representation in which the length of the chromosome is independent of the size of the input network, and each individual in each generation leads to the k-automorphism solution. Moreover, we present a heuristic method for selecting the set of vertex disjoint subgraphs. To test the algorithm, we run experiments on a set of real social networks and use the SecGraph tool to evaluate our results in terms of protection against deanonymization attacks and preserving data utility. It makes our experimental results comparable with any future research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Social Network Analysis and Mining
ISSN
1869-5450
e-ISSN
1869-5469
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
21
Strana od-do
"Article Number: 63"
Kód UT WoS článku
000963155900001
EID výsledku v databázi Scopus
2-s2.0-85152619775