Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016937" target="_blank" >RIV/62690094:18450/20:50016937 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/pdf/10.1145/3407023.3409184" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3407023.3409184</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3407023.3409184" target="_blank" >10.1145/3407023.3409184</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection
Popis výsledku v původním jazyce
Geosocial networks (GSNs) have become an important branch of location-based services since sharing information among friends is the additional feature to provide information based on the user's current location. The growing popularity of location-based services contribute to the development of highly customized and flexible utilities. However, providing customized services relates to collecting and storing a large amount of users' information. In this paper, we focus on the privacy-preserving concern in publishing GSN datasets. We introduce a new (k, l)-degree anonymization method to prevent the re-identification attack in the published GSN dataset. The presented method anonymizes users' social relationships as well as location-based information in GSN. We propose the new (k, l)-degree anonymization algorithm which modifies the network structure with a sequence of edge editing operations. GSN is newly represented by the combination of social network describing social ties between users and affiliation network linking users with their checked-in locations. Furthermore, we innovatively use the location entropy metric in the proposed GSN anonymization method. The location entropy measures the importance of the visited locations in the edge selection procedure of the (k, l)-degree anonymization algorithm. We explore the usability of the algorithm by running experiments on real-world geosocial network datasets, Gowalla and Brightkite.
Název v anglickém jazyce
Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection
Popis výsledku anglicky
Geosocial networks (GSNs) have become an important branch of location-based services since sharing information among friends is the additional feature to provide information based on the user's current location. The growing popularity of location-based services contribute to the development of highly customized and flexible utilities. However, providing customized services relates to collecting and storing a large amount of users' information. In this paper, we focus on the privacy-preserving concern in publishing GSN datasets. We introduce a new (k, l)-degree anonymization method to prevent the re-identification attack in the published GSN dataset. The presented method anonymizes users' social relationships as well as location-based information in GSN. We propose the new (k, l)-degree anonymization algorithm which modifies the network structure with a sequence of edge editing operations. GSN is newly represented by the combination of social network describing social ties between users and affiliation network linking users with their checked-in locations. Furthermore, we innovatively use the location entropy metric in the proposed GSN anonymization method. The location entropy measures the importance of the visited locations in the edge selection procedure of the (k, l)-degree anonymization algorithm. We explore the usability of the algorithm by running experiments on real-world geosocial network datasets, Gowalla and Brightkite.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 15th International Conference on Availability, Reliability and Security
ISBN
978-1-4503-8833-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Association of computing machinery
Místo vydání
New York
Místo konání akce
Virtual Event, Ireland
Datum konání akce
25. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—