Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016937" target="_blank" >RIV/62690094:18450/20:50016937 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.acm.org/doi/pdf/10.1145/3407023.3409184" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3407023.3409184</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3407023.3409184" target="_blank" >10.1145/3407023.3409184</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection

  • Popis výsledku v původním jazyce

    Geosocial networks (GSNs) have become an important branch of location-based services since sharing information among friends is the additional feature to provide information based on the user&apos;s current location. The growing popularity of location-based services contribute to the development of highly customized and flexible utilities. However, providing customized services relates to collecting and storing a large amount of users&apos; information. In this paper, we focus on the privacy-preserving concern in publishing GSN datasets. We introduce a new (k, l)-degree anonymization method to prevent the re-identification attack in the published GSN dataset. The presented method anonymizes users&apos; social relationships as well as location-based information in GSN. We propose the new (k, l)-degree anonymization algorithm which modifies the network structure with a sequence of edge editing operations. GSN is newly represented by the combination of social network describing social ties between users and affiliation network linking users with their checked-in locations. Furthermore, we innovatively use the location entropy metric in the proposed GSN anonymization method. The location entropy measures the importance of the visited locations in the edge selection procedure of the (k, l)-degree anonymization algorithm. We explore the usability of the algorithm by running experiments on real-world geosocial network datasets, Gowalla and Brightkite.

  • Název v anglickém jazyce

    Anonymization of geosocial network data by the (k, l)-degree method with location entropy edge selection

  • Popis výsledku anglicky

    Geosocial networks (GSNs) have become an important branch of location-based services since sharing information among friends is the additional feature to provide information based on the user&apos;s current location. The growing popularity of location-based services contribute to the development of highly customized and flexible utilities. However, providing customized services relates to collecting and storing a large amount of users&apos; information. In this paper, we focus on the privacy-preserving concern in publishing GSN datasets. We introduce a new (k, l)-degree anonymization method to prevent the re-identification attack in the published GSN dataset. The presented method anonymizes users&apos; social relationships as well as location-based information in GSN. We propose the new (k, l)-degree anonymization algorithm which modifies the network structure with a sequence of edge editing operations. GSN is newly represented by the combination of social network describing social ties between users and affiliation network linking users with their checked-in locations. Furthermore, we innovatively use the location entropy metric in the proposed GSN anonymization method. The location entropy measures the importance of the visited locations in the edge selection procedure of the (k, l)-degree anonymization algorithm. We explore the usability of the algorithm by running experiments on real-world geosocial network datasets, Gowalla and Brightkite.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 15th International Conference on Availability, Reliability and Security

  • ISBN

    978-1-4503-8833-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    Association of computing machinery

  • Místo vydání

    New York

  • Místo konání akce

    Virtual Event, Ireland

  • Datum konání akce

    25. 8. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku