High-degree noise addition method for the κ-degree anonymization algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017852" target="_blank" >RIV/62690094:18450/20:50017852 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9322670" target="_blank" >https://ieeexplore.ieee.org/document/9322670</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCISISIS50064.2020.9322670" target="_blank" >10.1109/SCISISIS50064.2020.9322670</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-degree noise addition method for the κ-degree anonymization algorithm
Popis výsledku v původním jazyce
Social network datasets are a valuable source of information for academic researches as well as business and marketing studies. Since social network datasets contain personal and sensitive information of their users, sharing the data with a third party gives rise to many privacy-preserving issues. The k -degree anonymization was developed to protect the users of social networks from the re-identification attack by modifying the network structure with a sequence of edge editing operations. In this paper, we introduce a novel approach for noise addition operation in the well-known k -degree anonymization algorithm k -DA. We propose the high-degree noise addition method that modifies the degree sequence anonymized by the degree anonymization procedure of k -DA before it is processed by the graph construction procedure of k -DA. Our proposed method significantly reduces the number of necessary repetitions of the graph constructing algorithm and positively affects the efficiency and runtime of the whole k -DA algorithm. Moreover, we show that the proposed high-degree noise addition algorithm improves k -DA in terms of data utility. We demonstrate its usability by running experiments on 13 different real-world social network datasets.
Název v anglickém jazyce
High-degree noise addition method for the κ-degree anonymization algorithm
Popis výsledku anglicky
Social network datasets are a valuable source of information for academic researches as well as business and marketing studies. Since social network datasets contain personal and sensitive information of their users, sharing the data with a third party gives rise to many privacy-preserving issues. The k -degree anonymization was developed to protect the users of social networks from the re-identification attack by modifying the network structure with a sequence of edge editing operations. In this paper, we introduce a novel approach for noise addition operation in the well-known k -degree anonymization algorithm k -DA. We propose the high-degree noise addition method that modifies the degree sequence anonymized by the degree anonymization procedure of k -DA before it is processed by the graph construction procedure of k -DA. Our proposed method significantly reduces the number of necessary repetitions of the graph constructing algorithm and positively affects the efficiency and runtime of the whole k -DA algorithm. Moreover, we show that the proposed high-degree noise addition algorithm improves k -DA in terms of data utility. We demonstrate its usability by running experiments on 13 different real-world social network datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS)
ISBN
978-1-72819-732-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
"Article number 9322670"
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Hachijo Island, Japan
Datum konání akce
5. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—