A Location Gradient Induced Sorting Approach for Multi-objective Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252011" target="_blank" >RIV/61989100:27240/22:10252011 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-16-8048-9_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-16-8048-9_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-16-8048-9_15" target="_blank" >10.1007/978-981-16-8048-9_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Location Gradient Induced Sorting Approach for Multi-objective Optimization
Popis výsledku v původním jazyce
In the field of population-based multi-objective optimization, a non-dominated sorting approach amounts to sort a set of candidate solutions with multiple objective function values, based on their dominance relations, and to find out solutions distributed into the first front set, second front set, and so on. A fast non-dominated sorting approach used within the framework of Non-dominated Sorting Genetic Algorithm (NSGA-II) reaches a O(MN2) time complexity (N is the population size, M is the number of the objectives). In this paper, we show an approach based on the Location Gradient (LG) number (LG sorting). Our LG sorting method is especially efficient in dealing with duplicate solutions, which only costs O(N) in front assignment process when all the solutions are duplicate. Except that, in many cases, the LG sorting method can reach O(N log N) time complexity. But in the worst case, it still costs O(MN2). We demonstrate the efficacy of the LG-based sorting method comparison against several existing non-dominated sorting procedures.
Název v anglickém jazyce
A Location Gradient Induced Sorting Approach for Multi-objective Optimization
Popis výsledku anglicky
In the field of population-based multi-objective optimization, a non-dominated sorting approach amounts to sort a set of candidate solutions with multiple objective function values, based on their dominance relations, and to find out solutions distributed into the first front set, second front set, and so on. A fast non-dominated sorting approach used within the framework of Non-dominated Sorting Genetic Algorithm (NSGA-II) reaches a O(MN2) time complexity (N is the population size, M is the number of the objectives). In this paper, we show an approach based on the Location Gradient (LG) number (LG sorting). Our LG sorting method is especially efficient in dealing with duplicate solutions, which only costs O(N) in front assignment process when all the solutions are duplicate. Except that, in many cases, the LG sorting method can reach O(N log N) time complexity. But in the worst case, it still costs O(MN2). We demonstrate the efficacy of the LG-based sorting method comparison against several existing non-dominated sorting procedures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021)
ISBN
978-981-16-8048-9
ISSN
2190-3018
e-ISSN
2190-3026
Počet stran výsledku
10
Strana od-do
157-166
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Commun Univ Zhejiang
Datum konání akce
29. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000773051200015