Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Zero Defect Manufacturing Using Digital Numerical Control

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10253821" target="_blank" >RIV/61989100:27240/22:10253821 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.pan.pl/dlibra/publication/142383/edition/124578/content" target="_blank" >https://journals.pan.pl/dlibra/publication/142383/edition/124578/content</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24425/mper.2022.142383" target="_blank" >10.24425/mper.2022.142383</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Zero Defect Manufacturing Using Digital Numerical Control

  • Popis výsledku v původním jazyce

    This paper proposes the application of the digital numerical control (DNC) technique to con-nect the smart meter to the inspection system and evaluate the total harmonic distortion (THD) value of power supply voltage in IEEE 519 standard by measuring the system. Ex-perimental design by the Taguchi method is proposed to evaluate the compatibility factors to choose Urethane material as an alternative to SS400 material for roller fabrication at the machining center. Computer vision uses artificial intelligence (AI) technique to identify object iron color in distinguishing black for urethane material and white for SS400 material, color recognition results are evaluated by measuring system, system measurement is locked when the object of identification is white material SS400. Computer vision using AI technology is also used to recognize facial objects and control the layout of machining staff positions according to their respective skills. The results obtained after the study are that the surface scratches in the machining center are reduced from 100% to zero defects and the surface polishing process is eliminated, shortening production lead time, and reducing 2 employees. The total operating cost of the processing line decreased by 5785 USD per year. Minitab 18.0 software uses statistical model analysis, experimental design, and Taguchi technical analysis to evaluate the process and experimentally convert materials for roller production. MATLAB 2022a runs a computer vision model using artificial intelligence (AI) to recognize color ob-jects to classify Urethane and SS400 materials and recognize the faces of people who control employee layout positions according to their respective skills.

  • Název v anglickém jazyce

    Zero Defect Manufacturing Using Digital Numerical Control

  • Popis výsledku anglicky

    This paper proposes the application of the digital numerical control (DNC) technique to con-nect the smart meter to the inspection system and evaluate the total harmonic distortion (THD) value of power supply voltage in IEEE 519 standard by measuring the system. Ex-perimental design by the Taguchi method is proposed to evaluate the compatibility factors to choose Urethane material as an alternative to SS400 material for roller fabrication at the machining center. Computer vision uses artificial intelligence (AI) technique to identify object iron color in distinguishing black for urethane material and white for SS400 material, color recognition results are evaluated by measuring system, system measurement is locked when the object of identification is white material SS400. Computer vision using AI technology is also used to recognize facial objects and control the layout of machining staff positions according to their respective skills. The results obtained after the study are that the surface scratches in the machining center are reduced from 100% to zero defects and the surface polishing process is eliminated, shortening production lead time, and reducing 2 employees. The total operating cost of the processing line decreased by 5785 USD per year. Minitab 18.0 software uses statistical model analysis, experimental design, and Taguchi technical analysis to evaluate the process and experimentally convert materials for roller production. MATLAB 2022a runs a computer vision model using artificial intelligence (AI) to recognize color ob-jects to classify Urethane and SS400 materials and recognize the faces of people who control employee layout positions according to their respective skills.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Management and Production Engineering Review

  • ISSN

    2080-8208

  • e-ISSN

    2082-1344

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    14

  • Strana od-do

    61-74

  • Kód UT WoS článku

    000874550600006

  • EID výsledku v databázi Scopus