Partial Discharge Detection by Edge Computing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252606" target="_blank" >RIV/61989100:27240/23:10252606 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/23:10252606
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10105954" target="_blank" >https://ieeexplore.ieee.org/document/10105954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3268763" target="_blank" >10.1109/ACCESS.2023.3268763</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partial Discharge Detection by Edge Computing
Popis výsledku v původním jazyce
Edge computing is becoming a mainstream platform for practical applications of machine learning and in particular deep learning. Many systems capable of efficient execution of deep neural models in the context of edge computing are readily available or beginning to appear on the consumer market. The Jetson platform from NVIDIA, the Neural stick from Intel, and the Edge TPU designed by Google are examples of devices that enable the application of complex neural networks in edge computing. This work investigates the ability of selected edge devices to address a real-world classification problem from electrical power engineering. It consists of the detection of partial discharges (PDs) from covered conductors (CCs) on high-voltage power lines. The CCs are used in heavily forested and generally inaccessible areas where clearance zones cannot be maintained. Detection of PDs can prevent forest fires and other disasters potentially caused by prolonged contact of CCs with vegetation. The problem is suitable for an edge computing-based solution because Internet connectivity in remote areas is usually insufficient and a 2G (GSM) mobile network is available at best. Because such locations are difficult to access and usually without a suitable power supply, the proposed solution puts an emphasis also on PD detection latency and the associated power consumption. Two principal approaches to PD detection are considered. One is based on the classification of 1D time series (raw data). The second approach uses the signal transformed into a 2D spectrogram. In this case, two types of algorithms are evaluated. The first one is a novel custom stacking ensemble detector composed of 2D convolutional neural networks and a neural meta-learner on top of it. The second one uses the well-known and widely-used used ResNet deep neural model.
Název v anglickém jazyce
Partial Discharge Detection by Edge Computing
Popis výsledku anglicky
Edge computing is becoming a mainstream platform for practical applications of machine learning and in particular deep learning. Many systems capable of efficient execution of deep neural models in the context of edge computing are readily available or beginning to appear on the consumer market. The Jetson platform from NVIDIA, the Neural stick from Intel, and the Edge TPU designed by Google are examples of devices that enable the application of complex neural networks in edge computing. This work investigates the ability of selected edge devices to address a real-world classification problem from electrical power engineering. It consists of the detection of partial discharges (PDs) from covered conductors (CCs) on high-voltage power lines. The CCs are used in heavily forested and generally inaccessible areas where clearance zones cannot be maintained. Detection of PDs can prevent forest fires and other disasters potentially caused by prolonged contact of CCs with vegetation. The problem is suitable for an edge computing-based solution because Internet connectivity in remote areas is usually insufficient and a 2G (GSM) mobile network is available at best. Because such locations are difficult to access and usually without a suitable power supply, the proposed solution puts an emphasis also on PD detection latency and the associated power consumption. Two principal approaches to PD detection are considered. One is based on the classification of 1D time series (raw data). The second approach uses the signal transformed into a 2D spectrogram. In this case, two types of algorithms are evaluated. The first one is a novel custom stacking ensemble detector composed of 2D convolutional neural networks and a neural meta-learner on top of it. The second one uses the well-known and widely-used used ResNet deep neural model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
20 April 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
44192-44204
Kód UT WoS článku
000988269000001
EID výsledku v databázi Scopus
—