Object Detection in Unmanned Aerial Vehicle Camera Stream Using Deep Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146264" target="_blank" >RIV/00216305:26220/22:PU146264 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/xpl/conhome/1800005/all-proceedings" target="_blank" >https://ieeexplore.ieee.org/xpl/conhome/1800005/all-proceedings</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943463" target="_blank" >10.1109/ICUMT57764.2022.9943463</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Object Detection in Unmanned Aerial Vehicle Camera Stream Using Deep Neural Network
Popis výsledku v původním jazyce
Nowadays, the world is experiencing an increasing boom in applications of artificial intelligence, especially deep learning. This is more and more used in many areas such as industry, medicine and security systems, etc. This article deals with object detection from Unmanned Aerial Vehicle (UAV) perspective. The whole system uses one camera, which is suitably positioned on the UAV to capture the scene. Image processing and subsequent object detection using the YOLOv4 model are performed on the Jetson Nano device. The device itself is relatively powerful, but to save the computing power of the device, the YOLOv4 neural network model was modified. The YOLOv4 model was trained on our own dataset. This training set was created specifically for UAV applications. The result of this work is a learned YOLOv4 neural network model designed for UAVs with regard to the used training set. The modified network model is also able to run in real-time and save computing power for possibly other UAV operations. All materials, dataset and scripts used in this work, are available at https://github.com/KicoSVK/object-detection-in-uav-using-yolov4.
Název v anglickém jazyce
Object Detection in Unmanned Aerial Vehicle Camera Stream Using Deep Neural Network
Popis výsledku anglicky
Nowadays, the world is experiencing an increasing boom in applications of artificial intelligence, especially deep learning. This is more and more used in many areas such as industry, medicine and security systems, etc. This article deals with object detection from Unmanned Aerial Vehicle (UAV) perspective. The whole system uses one camera, which is suitably positioned on the UAV to capture the scene. Image processing and subsequent object detection using the YOLOv4 model are performed on the Jetson Nano device. The device itself is relatively powerful, but to save the computing power of the device, the YOLOv4 neural network model was modified. The YOLOv4 model was trained on our own dataset. This training set was created specifically for UAV applications. The result of this work is a learned YOLOv4 neural network model designed for UAVs with regard to the used training set. The modified network model is also able to run in real-time and save computing power for possibly other UAV operations. All materials, dataset and scripts used in this work, are available at https://github.com/KicoSVK/object-detection-in-uav-using-yolov4.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FW01010548" target="_blank" >FW01010548: Detekce, identifikace a sledování objektů z UAV pomocí strojového vidění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2021 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9866-3
ISSN
2157-023X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
80-84
Název nakladatele
IEEE
Místo vydání
Valencia, Spain
Místo konání akce
Valencia, Spain
Datum konání akce
11. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—