Advanced Preliminary Screening for PD Detection for Overhead Distribution Lines with Covered Conductors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256176" target="_blank" >RIV/61989100:27240/24:10256176 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10256176
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896324004701?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896324004701?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2024.07.381" target="_blank" >10.1016/j.ifacol.2024.07.381</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Preliminary Screening for PD Detection for Overhead Distribution Lines with Covered Conductors
Popis výsledku v původním jazyce
This study proposes a novel approach to optimize partial discharge detection in overhead lines with covered conductors. The approach uses 2D Convolutional Neural Networks and HW neural network accelerator Edge TPU. The critical advancement of this research lies in exploring two distinct 2D classification methods - 2D histograms and spectrogram - and adjusting neural network thresholds to selectively identify potential positive PD samples with enhanced accuracy. The proposed approach addresses the prevalent challenge of costly and limited remote data transmission in PD detection. It significantly reduces the need for extensive data transfer by focusing on potentially positive samples. This evaluation of two approaches for detection of partial discharges, coupled with the strategic threshold adjustment, presents a novel solution in the realm of PD detection, offering increased efficiency and cost-effectiveness. By evaluating and comparing these strategies of 2D classification and threshold optimization, this research contributes to the field of partial discharges detection. It proposes a method that not only minimizes operational costs but also aligns with environmental sustainability goals, paving the way for more advanced maintenance practices in power transmission systems. Copyright (c) 2024 The Authors.
Název v anglickém jazyce
Advanced Preliminary Screening for PD Detection for Overhead Distribution Lines with Covered Conductors
Popis výsledku anglicky
This study proposes a novel approach to optimize partial discharge detection in overhead lines with covered conductors. The approach uses 2D Convolutional Neural Networks and HW neural network accelerator Edge TPU. The critical advancement of this research lies in exploring two distinct 2D classification methods - 2D histograms and spectrogram - and adjusting neural network thresholds to selectively identify potential positive PD samples with enhanced accuracy. The proposed approach addresses the prevalent challenge of costly and limited remote data transmission in PD detection. It significantly reduces the need for extensive data transfer by focusing on potentially positive samples. This evaluation of two approaches for detection of partial discharges, coupled with the strategic threshold adjustment, presents a novel solution in the realm of PD detection, offering increased efficiency and cost-effectiveness. By evaluating and comparing these strategies of 2D classification and threshold optimization, this research contributes to the field of partial discharges detection. It proposes a method that not only minimizes operational costs but also aligns with environmental sustainability goals, paving the way for more advanced maintenance practices in power transmission systems. Copyright (c) 2024 The Authors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFAC-PapersOnLine. Volume 58, Issue 9
ISBN
—
ISSN
2405-8963
e-ISSN
2405-8963
Počet stran výsledku
6
Strana od-do
114-119
Název nakladatele
Publish by Elsevier B.V.
Místo vydání
Oxford
Místo konání akce
Brno
Datum konání akce
19. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001296083700020